
1

Nano: A Feeless Distributed Cryptocurrency
Network
Colin LeMahieu

clemahieu@nano.co

Abstract—Recently, high demand and limited scalability have
increased the average transaction times and fees in popular
cryptocurrencies, yielding an unsatisfactory experience. Here we
introduce Nano, a cryptocurrency with a novel block-lattice ar-
chitecture where each account has its own blockchain, delivering
near instantaneous transaction speed and unlimited scalability.
Each user has their own blockchain, allowing them to update
it asynchronously to the rest of the network, resulting in fast
transactions with minimal overhead. Transactions keep track
of account balances rather than transaction amounts, allowing
aggressive database pruning without compromising security. To
date, the Nano network has processed 4.2 million transactions
with an unpruned ledger size of only 1.7GB. Nano’s feeless,
split-second transactions make it the premier cryptocurrency for
consumer transactions.

Index Terms—cryptocurrency, blockchain, Nano, distributed
ledger, digital, transactions

I. INTRODUCTION

S
INCE the implementation of Bitcoin in 2009, there has

been a growing shift away from traditional, government-

backed currencies and financial systems towards modern pay-

ments systems based on cryptography, which offer the ability

to store and transfer funds in a trustless and secure manner

[1]. In order to function effectively, a currency must be

easily transferable, non-reversible, and have limited or no fees.

The increased transaction times, large fees, and questionable

network scalability have raised questions about the practicality

of Bitcoin as an everyday currency.

In this paper, we introduce Nano, a low-latency cryp-

tocurrency built on an innovative block-lattice data structure

offering unlimited scalability and no transaction fees. Nano

by design is a simple protocol with the sole purpose of being

a high-performance cryptocurrency. The Nano protocol can

run on low-power hardware, allowing it to be a practical,

decentralized cryptocurrency for everyday use.

Cryptocurrency statistics reported in this paper are accurate

as of publication date.

II. BACKGROUND

In 2008, an anonymous individual under the pseudonym

Satoshi Nakamoto published a whitepaper outlining the

world’s first decentralized cryptocurrency, Bitcoin [1]. A key

innovation brought about by Bitcoin was the blockchain, a

public, immutable and decentralized data-structure which is

used as a ledger for the currency’s transactions. Unfortunately,

as Bitcoin matured, several issues in the protocol made Bitcoin

prohibitive for many applications:

1) Poor scalability: Each block in the blockchain can store

a limited amount of data, which means the system can

only process so many transactions per second, making

spots in a block a commodity. Currently the median

transaction fee is $10.38 [2].

2) High latency: The average confirmation time is 164

minutes [3].

3) Power inefficient: The Bitcoin network consumes an es-

timated 27.28TWh per year, using on average 260KWh

per transaction [4].

Bitcoin, and other cryptocurrencies, function by achieving

consensus on their global ledgers in order to verify legitimate

transactions while resisting malicious actors. Bitcoin achieves

consensus via an economic measure called Proof of Work

(PoW). In a PoW system participants compete to compute a

number, called a nonce, such that the hash of the entire block

is in a target range. This valid range is inversely proportional

to the cumulative computation power of the entire Bitcoin

network in order to maintain a consistent average time taken to

find a valid nonce. The finder of a valid nonce is then allowed

to add the block to the blockchain; therefore, those who

exhaust more computational resources to compute a nonce

play a greater role in the state of the blockchain. PoW provides

resistance against a Sybil attack, where an entity behaves as

multiple entities to gain additional power in a decentralized

system, and also greatly reduces race conditions that inherently

exist while accessing a global data-structure.
An alternative consensus protocol, Proof of Stake (PoS),

was first introduced by Peercoin in 2012 [5]. In a PoS system,

participants vote with a weight equivalent to the amount

of wealth they possess in a given cryptocurrency. With this

arrangement, those who have a greater financial investment are

given more power and are inherently incentivized to maintain

the honesty of the system or risk losing their investment. PoS

does away with the wasteful computation power competition,

only requiring light-weight software running on low power

hardware.
The original Nano (RaiBlocks) paper and first beta imple-

mentation were published in December, 2014, making it one

of the first Directed Acyclic Graph (DAG) based cryptocur-

rencies [6]. Soon after, other DAG cryptocurrencies began

to develop, most notably DagCoin/Byteball and IOTA [7],

[8]. These DAG-based cryptocurrencies broke the blockchain

mold, improving system performance and security. Byteball

achieves consensus by relying on a “main-chain” comprised

of honest, reputable and user-trusted “witnesses”, while IOTA

achieves consensus via the cumulative PoW of stacked trans-

actions. Nano achieves consensus via a balance-weighted vote



2

Receive Repeat Observe Quorum Confirm

(a) When no conflict is detected, no further overhead is required.

Receive Repeat Observe Conflict Vote Confirm

(b) In the event of a conflicting transaction, nodes vote for the valid transaction.

Fig. 1. Nano requires no additional overhead for typical transactions. In the event of conflicting transactions, nodes must vote for the transaction to keep

on conflicting transactions. This consensus system provides

quicker, more deterministic transactions while still maintaining

a strong, decentralized system. Nano continues this develop-

ment and has positioned itself as one of the highest performing

cryptocurrencies.

III. NANO COMPONENTS

Before describing the overall Nano architecture, we define

the individual components that make up the system.

A. Account

An account is the public-key portion of a digital signature

key-pair. The public-key, also referred to as the address, is

shared with other network participants while the private-key

is kept secret. A digitally signed packet of data ensures that

the contents were approved by the private-key holder. One user

may control many accounts, but only one public address may

exist per account.

B. Block/Transaction

The term “block” and “transaction” are often used in-

terchangeably, where a block contains a single transaction.

Transaction specifically refers to the action while block refers

to the digital encoding of the transaction. Transactions are

signed by the private-key belonging to the account on which

the transaction is performed.

Account A

Block NA

Account A

Block NA − 1

...

Account A

Block 1

Account A

Block 0

Account B

Block NB

Account B

Block NB − 1

...

Account B

Block 1

Account B

Block 0

Account C

Block NC

Account C

Block NC − 1

...

Account C

Block 1

Account C

Block 0

Fig. 2. Each account has its own blockchain containing the account’s balance
history. Block 0 must be an open transaction (Section IV-B)

C. Ledger

The ledger is the global set of accounts where each account

has its own transaction chain (Figure 2). This is a key design

component that falls under the category of replacing a run-time

agreement with a design-time agreement; everyone agrees via

signature checking that only an account owner can modify

their own chain. This converts a seemingly shared data-

structure, a distributed ledger, in to a set of non-shared ones.

D. Node

A node is a piece of software running on a computer that

conforms to the Nano protocol and participates in the Nano

network. The software manages the ledger and any accounts

the node may control, if any. A node may either store the

entire ledger or a pruned history containing only the last few

block of each account’s blockchain. When setting up a new

node it is recommended to verify the entire history and prune

locally.

IV. SYSTEM OVERVIEW

Unlike blockchains used in many other cryptocurrencies,

Nano uses a block-lattice structure. Each account has its own

blockchain (account-chain) equivalent to the account’s trans-

action/balance history (Figure 2). Each account-chain can only

be updated by the account’s owner; this allows each account-

chain to be updated immediately and asynchronously to the

rest of the block-lattice, resulting in quick transactions. Nano’s

protocol is extremely light-weight; each transaction fits within

the required minimum UDP packet size for being transmitted

over the internet. Hardware requirements for nodes are also

minimal, since nodes only have to record and rebroadcast

blocks for most transactions (Figure 1).
The system is initiated with a genesis account containing

the genesis balance. The genesis balance is a fixed quantity

and can never be increased. The genesis balance is divided and

sent to other accounts via send transactions registered on the

genesis account-chain. The sum of the balances of all accounts

will never exceed the initial genesis balance which gives the

system an upper bound on quantity and no ability to increase

it.
This section will walk through how different types of

transactions are constructed and propagated throughout the

network.

A. Transactions

Transferring funds from one account to another requires two

transactions: a send deducting the amount from the sender’s



3

A B C

S

R

R

R

S

R

R

S

S

S

...
...

...

T
im

e

Fig. 3. Visualization of the block-lattice. Every transfer of funds requires a
send block (S) and a receive block (R), each signed by their account-chain’s
owner (A,B,C)

balance and a receive adding the amount to the receiving

account’s balance (Figure 3).

Transferring amounts as separate transactions in the sender’s

and receiver’s accounts serves a few important purposes:

1) Sequencing incoming transfers that are inherently asyn-

chronous.

2) Keeping transactions small to fit in UDP packets.

3) Facilitating ledger pruning by minimizing the data foot-

print.

4) Isolating settled transactions from unsettled ones.

More than one account transferring to the same destination

account is an asynchronous operation; network latency and

the sending accounts not necessarily being in communication

with each other means there is no universally agreeable way

to know which transaction happened first. Since addition is

associative, the order the inputs are sequenced does not matter,

and hence we simply need a global agreement. This is a key

design component that converts a run-time agreement in to a

design-time agreement. The receiving account has control over

deciding which transfer arrived first and is expressed by the

signed order of the incoming blocks.

If an account wants to make a large transfer that was

received as a set of many small transfers, we want to represent

this in a way that fits within a UDP packet. When a receiving

account sequences input transfers, it keeps a running total of

its account balance so that at any time it has the ability to

transfer any amount with a fixed size transaction. This differs

from the input/output transaction model used by Bitcoin and

other cryptocurrencies.

Some nodes are uninterested in expending resources to store

an account’s full transaction history; they are only interested

in each account’s current balance. When an account makes a

transaction, it encodes its accumulated balance and these nodes

only need to keep track of the latest block, which allows them

to discard historical data while maintaining correctness.

Even with a focus on design-time agreements, there is a

delay window when validating transactions due to identifying

and handling bad actors in the network. Since agreements in

Nano are reached quickly, on the order of milliseconds to

seconds, we can present the user with two familiar categories

of incoming transactions: settled and unsettled. Settled transac-

tions are transactions where an account has generated receive

blocks. Unsettled transactions have not yet been incorporated

in to the receiver’s cumulative balance. This is a replacement

for the more complex and unfamiliar confirmations metric in

other cryptocurrencies.

B. Creating an Account

To create an account, you need to issue an open transaction

(Figure 4). An open transaction is always the first transaction

of every account-chain and can be created upon the first receipt

of funds. The account field stores the public-key (address)

derived from the private-key that is used for signing. The

source field contains the hash of the transaction that sent the

funds. On account creation, a representative must be chosen to

vote on your behalf; this can be changed later (Section IV-F).

The account can declare itself as its own representative.

open {

account: DC04354B1...AE8FA2661B2,

source: DC1E2B3F7C...182A0E26B4A,

representative: xrb_1anr...posrs,

work: 0000000000000000,

type: open,

signature: 83B0...006433265C7B204

}

Fig. 4. Anatomy of an open transaction

C. Account Balance

The account balance is recorded within the ledger itself.

Rather than recording the amount of a transaction, verification

(Section IV-I) requires checking the difference between the

balance at the send block and the balance of the preceding

block. The receiving account may then increment the previous

balance as measured into the final balance given in the new

receive block. This is done to improve processing speed

when downloading high volumes of blocks. When requesting

account history, amounts are already given.

D. Sending From an Account

To send from an address, the address must already have an

existing open block, and therefore a balance (Figure 5). The

previous field contains the hash of the previous block in the

account-chain. The destination field contains the account for

funds to be sent to. A send block is immutable once confirmed.

Once broadcasted to the network, funds are immediately



4

deducted from the balance of the senders account and wait

as pending until the receiving party signs a block to accept

these funds. Pending funds should not be considered awaiting

confirmation, as they are as good as spent from the senders

account and the sender cannot revoke the transaction.

send {

previous: 1967EA355...F2F3E5BF801,

balance: 010a8044a0...1d49289d88c,

destination: xrb_3w...m37goeuufdp,

work: 0000000000000000,

type: send,

signature: 83B0...006433265C7B204

}

Fig. 5. Anatomy of a send transaction

E. Receiving a Transaction

To complete a transaction, the recipient of sent funds must

create a receive block on their own account-chain (Figure 6).

The source field references the hash of the associated send

transaction. Once this block is created and broadcasted, the

accounts balance is updated and the funds have officially

moved into their account.

receive {

previous: DC04354B1...AE8FA2661B2,

source: DC1E2B3F7C6...182A0E26B4A,

work: 0000000000000000,

type: receive,

signature: 83B0...006433265C7B204

}

Fig. 6. Anatomy of a receive transaction

F. Assigning a Representative

Account holders having the ability to choose a representa-

tive to vote on their behalf is a powerful decentralization tool

that has no strong analog in Proof of Work or Proof of Stake

protocols. In conventional PoS systems, the account owner’s

node must be running to participate in voting. Continuously

running a node is impractical for many users; giving a rep-

resentative the power to vote on an account’s behalf relaxes

this requirement. Account holders have the ability to reassign

consensus to any account at any time. A change transaction

changes the representative of an account by subtracting the

vote weight from the old representative and adding the weight

to the new representative (Figure 7). No funds are moved in

this transaction, and the representative does not have spending

power of the account’s funds.

G. Forks and Voting

A fork occurs when j signed blocks b1, b2, . . . , bj claim

the same block as their predecessor (Figure 8). These blocks

change {

previous: DC04354B1...AE8FA2661B2,

representative: xrb_1anrz...posrs,

work: 0000000000000000,

type: change,

signature: 83B0...006433265C7B204

}

Fig. 7. Anatomy of a change transaction

cause a conflicting view on the status of an account and must

be resolved. Only the account’s owner has the ability to sign

blocks into their account-chain, so a fork must be the result of

poor programming or malicious intent (double-spend) by the

account’s owner.

Account A

Block i

Account A

Block i+ 1

Account A

Block i+ 2

Account A

Block i+ 2

Fig. 8. A fork occurs when two (or more) signed blocks reference the same
previous block. Older blocks are on the left; newer blocks are on the right

Upon detection, a representative will create a vote referenc-

ing the block b̂i in its ledger and broadcast it to the network.

The weight of a node’s vote, wi, is the sum of the balances of

all accounts that have named it as its representative. The node

will observe incoming votes from the other M online repre-

sentatives and keep a cumulative tally for 4 voting periods, 1

minute total, and confirm the winning block (Equation 1).

v(bj) =

M∑

i=1

wi✶b̂i=bj
(1)

b∗ = argmax
bj

v(bj) (2)

The most popular block b∗ will have the majority of the

votes and will be retained in the node’s ledger (Equation 2).

The block(s) that lose the vote are discarded. If a representative

replaces a block in its ledger, it will create a new vote with

a higher sequence number and broadcast the new vote to the

network. This is the only scenario where representatives vote.

In some circumstances, brief network connectivity issues

may cause a broadcasted block to not be accepted by all

peers. Any subsequent block on this account will be ignored

as invalid by peers that did not see the initial broadcast. A

rebroadcast of this block will be accepted by the remaining

peers and subsequent blocks will be retrieved automatically.

Even when a fork or missing block occurs, only the accounts

referenced in the transaction are affected; the rest of the

network proceeds with processing transactions for all other

accounts.



5

H. Proof of Work

All four transaction types have a work field that must be

correctly populated. The work field allows the transaction

creator to compute a nonce such that the hash of the nonce

concatenated with the previous field in receive/send/change

transactions or the account field in an open transaction is

below a certain threshold value. Unlike Bitcoin, the PoW in

Nano is simply used as an anti-spam tool, similar to Hashcash,

and can be computed on the order of seconds [9]. Once a

transaction is sent, the PoW for the subsequent block can

be precomputed since the previous block field is known; this

will make transactions appear instantaneous to an end-user so

long as the time between transactions is greater than the time

required to compute the PoW.

I. Transaction Verification

For a block to be considered valid, it must have the

following attributes:

1) The block must not already be in the ledger (duplicate

transaction).

2) Must be signed by the account’s owner.

3) The previous block is the head block of the account-

chain. If it exists but is not the head, it is a fork.

4) The account must have an open block.

5) The computed hash meets the PoW threshold require-

ment.

If it is a receive block, check if the source block hash is

pending, meaning it has not already been redeemed. If it is a

send block, the balance must be less than the previous balance.

V. ATTACK VECTORS

Nano, like all decentralized cryptocurrencies, may be at-

tacked by malicious parties for attempted financial gain or

system demise. In this section we outline a few possible attack

scenarios, the consequences of such an attack, and how Nano’s

protocol takes preventative measures.

A. Block Gap Synchronization

In Section IV-G, we discussed the scenario where a block

may not be properly broadcasted, causing the network to

ignore subsequent blocks. If a node observes a block that does

not have the referenced previous block, it has two options:

1) Ignore the block as it might be a malicious garbage

block.

2) Request a resync with another node.

In the case of a resync, a TCP connection must be formed

with a bootstrapping node to facilitate the increased amount

of traffic a resync requires. However, if the block was actually

a bad block, then the resync was unnecessary and needlessly

increased traffic on the network. This is a Network Amplifi-

cation Attack and results in a denial-of-service.

To avoid unnecessary resyncing, nodes will wait until a

certain threshold of votes have been observed for a potentially

malicious block before initiating a connection to a bootstrap

node to synchronize. If a block doesn’t receive enough votes

it can be assumed to be junk data.

B. Transaction Flooding

A malicious entity could send many unnecessary but valid

transactions between accounts under its control in an attempt

to saturate the network. With no transaction fees they are

able to continue this attack indefinitely. However, the PoW

required for each transaction limits the transaction rate the

malicious entity could generate without significantly investing

in computational resources. Even under such an attack in an

attempt to inflate the ledger, nodes that are not full historical

nodes are able to prune old transactions from their chain; this

clamps the storage usage from this type of attack for almost

all users.

C. Sybil Attack

An entity could create hundreds of Nano nodes on a single

machine; however, since the voting system is weighted based

on account balance, adding extra nodes in to the network

will not gain an attacker extra votes. Therefore there is no

advantage to be gained via a Sybil attack.

D. Penny-Spend Attack

A penny-spend attack is where an attacker spends infinites-

imal quantities to a large number of accounts in order to

waste the storage resources of nodes. Block publishing is rate-

limited by the PoW, so this limits the creation of accounts

and transactions to a certain extent. Nodes that are not full

historical nodes can prune accounts below a statistical metric

where the account is most likely not a valid account. Finally,

Nano is tuned to use minimal permanent storage space, so

space required to store one additional account is proportional

to the size of an open block+ indexing = 96B+32B = 128B.

This equates to 1GB being able to store 8 million penny-spend

account. If nodes wanted to prune more aggressively, they can

calculate a distribution based on access frequency and delegate

infrequently used accounts to slower storage.

E. Precomputed PoW Attack

Since the owner of an account will be the only entity

adding blocks to the account-chain, sequential blocks can be

computed, along with their PoW, before being broadcasted

to the network. Here the attacker generates a myriad of

sequential blocks, each of minimal value, over an extended

period of time. At a certain point, the attacker performs a

Denial of Service (DoS) by flooding the network with lots of

valid transactions, which other nodes will process and echo

as quickly as possible. This is an advanced version of the

transaction flooding described in Section V-B. Such an attack

would only work briefly, but could be used in conjunction with

other attacks, such as a >50% Attack (Section V-F) to increase

effectiveness. Transaction rate-limiting and other techniques

are currently being investigated to mitigate attacks.

F. >50% Attack

The metric of consensus for Nano is a balance weighted

voting system. If an attacker is able to gain over 50% of



6

the voting strength, they can cause the network to oscillate

consensus rendering the system broken. An attacker is able to

lower the amount of balance they must forfeit by preventing

good nodes from voting through a network DoS. Nano takes

the following measures to prevent such an attack:

1) The primary defense against this type of attack is voting-

weight being tied to investment in the system. An

account holder is inherently incentivized to maintain

the honesty of the system to protect their investment.

Attempting to flip the ledger would be destructive to the

system as a whole which would destroy their investment.

2) The cost of this attack is proportional to the market

capitalization of Nano. In PoW systems, technology can

be invented that gives disproportionate control compared

to monetary investment and if the attack is successful,

this technology could be repurposed after the attack is

complete. With Nano the cost of attacking the system

scales with the system itself and if an attack were to

be successful the investment in the attack cannot be

recovered.

3) In order to maintain the maximum quorum of voters, the

next line of defense is representative voting. Account

holders who are unable to reliably participate in voting

for connectivity reasons can name a representative who

can vote with the weight of their balance. Maximizing

the number and diversity of representatives increases

network resiliency.

4) Forks in Nano are never accidental, so nodes can make

policy decisions on how to interact with forked blocks.

The only time non-attacker accounts are vulnerable to

block forks is if they receive a balance from an attacking

account. Accounts wanting to be secure from block forks

can wait a little or a lot longer before receiving from

an account who generated forks or opt to never receive

at all. Receivers could also generate separate accounts

to use when receiving funds from dubious accounts in

order to insulate other accounts.

5) A final line of defense that has not yet been implemented

is block cementing. Nano goes to great lengths to settle

block forks quickly via voting. Nodes could be config-

ured to cement blocks, which would prevent them from

being rolled back after a certain period of time. The

network is sufficiently secured through focusing on fast

settling time to prevent ambiguous forks.

A more sophisticated version of a > 50% attack is detailed

in Figure 9. “Offline” is the percentage of representatives who

have been named but are not online to vote. “Stake” is the

amount of investment the attacker is voting with. “Active”

is representatives that are online and voting according to the

protocol. An attacker can offset the amount of stake they must

forfeit by knocking other voters offline via a network DoS

attack. If this attack can be sustained, the representatives being

attacked will become unsynchronized and this is demonstrated

by “Unsync.” Finally, an attacker can gain a short burst in

relative voting strength by switching their Denial of Service

attack to a new set of representatives while the old set is re-

synchronizing their ledger, this is demonstrated by “Attack.”

Offline Unsync Attack Active Stake

Fig. 9. A potential voting arrangement that could lower 51% attack require-
ments.

If an attacker is able to cause Stake >Active by a combina-

tion of these circumstances, they would be able to successfully

flip votes on the ledger at the expense of their stake. We

can estimate how much this type of attack could cost by

examining the market cap of other systems. If we estimate

33% of representatives are offline or attacked via DoS, an

attacker would need to purchase 33% of the market cap in

order to attack the system via voting.

G. Bootstrap Poisoning

The longer an attacker is able to hold an old private-key

with a balance, the higher the probability that balances that

existed at that time will not have participating representatives

because their balances or representatives have transferred to

newer accounts. This means if a node is bootstrapped to an

old representation of the network where the attacker has a

quorum of voting stake compared to representatives at that

point in time, they would be able to oscillate voting decisions

to that node. If this new user wanted to interact with anyone

besides the attacking node all of their transactions would be

denied since they have different head blocks. The net result

is nodes can waste the time of new nodes in the network

by feeding them bad information. To prevent this, nodes can

be paired with an initial database of accounts and known-

good block heads; this is a replacement for downloading the

database all the way back to the genesis block. The closer

the download is to being current, the higher the probability

of accurately defending against this attack. In the end, this

attack is probably no worse than feeding junk data to nodes

while bootstrapping, since they wouldn’t be able to transact

with anyone who has a contemporary database.

VI. IMPLEMENTATION

Currently the reference implementation is implemented in

C++ and has been producing releases since 2014 on Github

[10].

A. Design Features

The Nano implementation adheres to the architecture stan-

dard outlined in this paper. Additional specifications are de-

scribed here.

1) Signing Algorithm: Nano uses a modified ED25519

elliptic curve algorithm with Blake2b hashing for all digital

signatures [11]. ED25519 was chosen for fast signing, fast

verification, and high security.

2) Hashing Algorithm: Since the hashing algorithm is only

used to prevent network spam, the algorithm choice is less

important when compared to mining-based cryptocurrencies.

Our implementation uses Blake2b as a digest algorithm against

block contents [12].



7

3) Key Derivation Function: In the reference wallet, keys

are encrypted by a password and the password is fed through

a key derivation function to protect against ASIC cracking

attempts. Presently Argon2 [13] is the winner of the only

public competition aimed at creating a resilient key derivation

function.

4) Block Interval: Since each account has its own

blockchain, updates can be performed asynchronous to the

state of network. Therefore there are no block intervals and

transactions can be published instantly.

5) UDP Message Protocol: Our system is designed to

operate indefinitely using the minimum amount of computing

resources as possible. All messages in the system were de-

signed to be stateless and fit within a single UDP packet. This

also makes it easier for lite peers with intermittent connectivity

to participate in the network without reestablishing short-term

TCP connections. TCP is used only for new peers when they

want to bootstrap the block chains in a bulk fashion.

Nodes can be sure their transaction was received by the

network by observing transaction broadcast traffic from other

nodes as it should see several copies echoed back to itself.

B. IPv6 and Multicast

Building on top of connection-less UDP allows future

implementations to use IPv6 multicast as a replacement for

traditional transaction flooding and vote broadcast. This will

reduce network bandwidth consumption and give more policy

flexibility to nodes going forward.

C. Performance

At the time of this writing, 4.2 million transactions have

been processed by the Nano network, yielding a blockchain

size of 1.7GB. Transaction times are measured on the order

of seconds. A current reference implementation operating on

commodity SSDs can process over 10,000 transactions per

second being primarily IO bound.

VII. RESOURCE USAGE

This is an overview of resources used by a Nano node.

Additionally, we go over ideas for reducing resource usage

for specific use cases. Reduced nodes are typically called light,

pruned, or simplified payment verification (SPV) nodes.

A. Network

The network activity of a node is dependent on how much

the node contributes towards the health of a network.

1) Representative: A representative node requires maxi-

mum network resources as it observes vote traffic from other

representatives and publishes its own votes.

2) Trustless: A trustless node is similar to a representative

node but is only an observer, it doesn’t contain a representative

account private key and does not publish votes of its own.

3) Trusting: A trusting node observes vote traffic from

one representative it trusts to correctly perform consensus.

This cuts down on the amount of inbound vote traffic from

representatives going to this node.

4) Light: A light node is also a trusting node that only

observes traffic for accounts in which it is interested allowing

minimal network usage.

5) Bootstrap: A bootstrap node serves up parts or all of the

ledger for nodes that are bringing themselves online. This is

done over a TCP connection rather than UDP since it involves

a large amount of data that requires advanced flow control.

B. Disk Capacity

Depending on the user demands, different node configura-

tions require different storage requirements.

1) Historical: A node interested in keeping a full historical

record of all transactions will require the maximum amount

of storage.

2) Current: Due to the design of keeping accumulated

balances with blocks, nodes only need to keep the latest

or head blocks for each account in order to participate in

consensus. If a node is uninterested in keeping a full history

it can opt to keep only the head blocks.

3) Light: A light node keeps no local ledger data and only

participates in the network to observe activity on accounts in

which it is interested or optionally create new transactions with

private keys it holds.

C. CPU

1) Transaction Generating: A node interested in creating

new transactions must produce a Proof of Work nonce in order

to pass Nano’s throttling mechanism. Computation of various

hardware is benchmarked in Appendix A.

2) Representative: A representative must verify signatures

for blocks, votes, and also produce its own signatures to

participate in consensus. The amount of CPU resources for a

representative node is significantly less than transaction gener-

ating and should work with any single CPU in a contemporary

computer.

3) Observer: An observer node doesn’t generate its own

votes. Since signature generation overhead is minimal, the

CPU requirements are almost identical to running a represen-

tative node.

VIII. CONCLUSION

In this paper we presented the framework for a trustless,

feeless, low-latency cryptocurrency that utilizes a novel block-

lattice structure and delegated Proof of Stake voting. The

network requires minimal resources, no high-power mining

hardware, and can process high transaction throughput. All

of this is achieved by having individual blockchains for each

account, eliminating access issues and inefficiencies of a

global data-structure. We identified possible attack vectors on

the system and presented arguments on how Nano is resistant

to these forms of attacks.

APPENDIX A

POW HARDWARE BENCHMARKS

As mentioned previously, the PoW in Nano is to reduce

network spam. Our node implementation provides acceleration



8

that can take advantage of OpenCL compatible GPUs. Table I

provides a real-life benchmark comparison of various hard-

ware. Currently the PoW threshold is fixed, but an adaptive

threshold may be implemented as average computing power

progresses.

TABLE I
HARDWARE POW PERFORMANCE

Device Transactions Per Second
Nvidia Tesla V100 (AWS) 6.4
Nvidia Tesla P100 (Google,Cloud) 4.9
Nvidia Tesla K80 (Google,Cloud) 1.64
AMD RX 470 OC 1.59
Nvidia GTX 1060 3GB 1.25
Intel Core i7 4790K AVX2 0.33
Intel Core i7 4790K,WebAssembly (Firefox) 0.14
Google Cloud 4 vCores 0.14-0.16
ARM64 server 4 cores (Scaleway) 0.05-0.07

ACKNOWLEDGMENT

We would like to thank Brian Pugh for compiling and

formatting this paper.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[2] “Bitcoin median transaction fee historical chart.” [Online]. Avail-
able: https://bitinfocharts.com/comparison/bitcoin-median transaction
fee.html

[3] “Bitcoin average confirmation time.” [Online]. Available: https:
//blockchain.info/charts/avg-confirmation-time

[4] “Bitcoin energy consumption index.” [Online]. Available: https:
//digiconomist.net/bitcoin-energy-consumption

[5] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake,” 2012. [Online]. Available: https://peercoin.net/assets/
paper/peercoin-paper.pdf

[6] C. LeMahieu, “Raiblocks distributed ledger network,” 2014.
[7] Y. Ribero and D. Raissar, “Dagcoin whitepaper,” 2015.
[8] S. Popov, “The tangle,” 2016.
[9] A. Back, “Hashcash - a denial of service counter-measure,” 2002.

[Online]. Available: http://www.hashcash.org/papers/hashcash.pdf
[10] C. LeMahieu, “Raiblocks,” 2014. [Online]. Available: https://github.

com/clemahieu/raiblocks
[11] D. J. Bernstein, N. Duif, T. Lange, P. Shwabe, and B.-Y. Yang,

“High-speed high-security signatures,” 2011. [Online]. Available:
http://ed25519.cr.yp.to/ed25519-20110926.pdf

[12] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“Blake2: Simpler, smaller, fast as md5,” 2012. [Online]. Available:
https://blake2.net/blake2.pdf

[13] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: The memory-
hard function for password hashing and other applications,” 2015.
[Online]. Available: https://password-hashing.net/argon2-specs.pdf


