
   
 

   
 

  
 

 

 

 

 

 

 

White Paper 
 

 

Version 2020-Jan-15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BOTLabs GmbH 

Berlin 



KILT White Paper                        Version 2020-Jan-15 

2 

 

Executive Summary 
KILT is a simple protocol for creating, claiming, issuing, presenting and verifying digital 

credentials. In contrast to peer-to-peer solutions for this, KILT features self-sovereign data as 

well as revocable credentials using blockchain technology.  

KILT was built to be a business enabler, not only for the software industry, but also for any 

entity, which has or wishes to establish a business model based on trust. 

KILT features a simple mechanism to describe and publish the content of a claim or the 

corresponding credential. 

KILT provides a JavaScript SDK, which makes it very accessible for developers.     

We believe KILT will be an essential building block of the Web 3.0. In particular KILT proposes: 

● A universal blockchain protocol for individuals, organisations, objects, and artificial 

intelligences to claim arbitrary attributes about themselves and get them attested by 

trusted entities.  

● A Trust Market for the Attesters of such claims, which allows trusted entities to attach 

prices to their valuable attestation work and get paid. 

● Mechanisms for putting claim holders in control of their data by storing the 

information on their storage and by giving them the choice which information they want 

to disclose to whom.  

Our main goal with KILT is to generate a level playing field for companies to explore new 

business models, related to trust relationships and data sovereignty. With our proposed 

system we would enable businesses and governments to rely on a common standard which 

is owned by everyone participating and not by a single company. 

The white paper is structured as follows: 

Chapter 1 describes trust in the internet and the problems and approaches around this topic 

in general and for KILT. If you are deep into trust, blockchain, and internet technology, you 

might want to skip the beginning of this chapter and start with the Conclusions and the Solution 

Statement resulting from them. The description of the whole concept behind KILT Protocol is 

divided into three chapters. Chapter 2 (Top-Down Trust Structures in KILT) introduces the 

fundamental and characteristic feature set of the protocol. Chapter 4 discusses the need for 

Claim Standardisation and describes the concept of CTYPEs. Chapter 5 describes how KILT 

Protocol would implement bottom-up trust with Token-Curated Attesters (TCAs). These three 

chapters should be read by anyone who wants to use or understand the concepts behind 

KILT. 

We describe the planned Trust Market economy in Chapter 3 and we outline an envisioned 

token economy for the KILT token in Chapter 6. If you are less interested in the economic 

implications of KILT Protocol you might choose to skip these chapters. 

The details of the technical implementation and the SDK of KILT Protocol are described in 

Chapter 7 and our roadmap plans for launching the KILT Network in Chapter 8. Chapter 7 is 

highly technological and addresses developers who plan to build services and applications on 

top of KILT Protocol. 
  



KILT White Paper                        Version 2020-Jan-15 

3 

 

Main Changes 

Compared to previous version (2019-05-28) 
 

• Executive summary 

• 1.3 Where We See the Opportunity Through Blockchain? 

• 1.4 Conclusion 

• 1.5 Solution Statement 

• 3.2 Participant Views and Economic Benefits 

• 4.3 Incentivising Standardisation 

• 5. Bottom-Up Trust: Token-Curated Attester (TCA) 

• 6. KILT Token Economy 

• 7. System Architecture 

o Nested CTYPEs 

o Quote 

• 8.3 Release Roadmap 

• GDPR Considerations 

 

Previous version:  

2019-05-28 https://ipfs.io/ipfs/QmbQytoeFev8h67gD7QSVo2EqiUD3XVGTUj7hXVjRkjDjG 

 

 

 

 

  

https://ipfs.io/ipfs/QmbQytoeFev8h67gD7QSVo2EqiUD3XVGTUj7hXVjRkjDjG


KILT White Paper                        Version 2020-Jan-15 

4 

 

Table of Contents 

1. Why the Internet Needs a Trust Network 7 

1.1. Trust on the Internet 7 

Evolution of Trust through Cooperation 7 

Forming Trust Relationships 8 

Problems of Creating Online Trust 8 

Current Solution Proposals and their Limitations 9 

1.2. Arguments for a Network Solution 11 

End-to-end Principle 11 

Standardisation for Interoperability 11 

Internet Governance 11 

Some Challenges of the Platform Web 12 

1.3. Where we see the Opportunity Through Blockchain? 14 

Why We Think Blockchain is the Solution 14 

What is the Role of Blockchain-Technology 14 

Network Solution through Blockchain 14 

1.4. Conclusion 15 

Value can be captured on the protocol layer. 15 

Protocols can acquire economic superpowers. 15 

Data belong to their producers and not to service providers. 15 

Existing data silos should be made interoperable. 15 

Standardisation could be a key to success. 16 

Providing trust can turn into a relevant business model for many companies. 16 

Mapping of existing organisational structures is essential. 16 

1.5. Solution Statement 16 

2. Top-Down Trust Structures in KILT 18 

2.1. Current Problems with Trust Structures on the Internet 18 

2.2. Current State in the Real World 19 

2.3. Solution Statement: KILT Protocol 20 

Self-Sovereign Data and Identity 20 

Roles 21 

Comparison to Current Standard Proposals and Definitions 22 

Claim Types (CTYPEs) 24 

Why KILT Needs a Blockchain 25 

Quotes 27 

Building Top-Down Trust Structures in KILT 27 

3. KILT Trust Market Economy 32 

3.1. Trust Market 32 

3.2. Participant Views and Economic Benefits 33 



KILT White Paper                        Version 2020-Jan-15 

5 

 

Value Flow in KILT 33 

Claimer 34 

Attester 35 

Verifier 36 

Example: Concept for the Food-net 36 

3.3. Economic Benefits in Trust Structures 39 

Aggregator 39 

Hierarchy of Trust 39 

Private Curated Registries (PCRs) 39 

4. Claim Standardisation 42 

4.1. We Need Standardised Claims for Investment Security 42 

Diversity of Standardisation Processes 42 

Investment Security 43 

4.2. What is a Claim Type (CTYPE)? 45 

Basic Concept behind CTYPEs 45 

Benefits of Using CTYPEs 47 

4.3. Incentivising Standardisation 47 

5. Bottom-Up Trust: Token-Curated Attester (TCA) 48 

5.1. Comparing TCRs with Real World Organisations 48 

5.2. Introduction to the Token-Curated Attester 51 

TCA Issues Credentials to Claimers 51 

Experts Do the Inspection Work before Issuing TCA Credentials 51 

Curators Select the Best Experts for their TCA 52 

5.3. Economic Incentives for Curators and Experts in a TCA 52 

5.4. TCA Subtoken Model 53 

Bonding Curve 54 

Subtoken Price Determination 56 

Starting a TCA 57 

Becoming a Curator by Buying into the TCA 58 

Governance Mechanisms 58 

5.5. Regulation-Friendly TCA Ecosystem built on the KILT Protocol 58 

6. KILT Token Economy 61 

6.1. KILT Token 61 

Overview of the KILT Token Functions 61 

KILT Token Emission 61 

6.2. Designing Demand and Incentives for the KILT Token 63 

Block Rewards for Security and Consensus 63 

Token Lock-up due to Staking in Proof-of-Stake 64 

Utility of KILT tokens 64 

6.3. Open Topics 64 



KILT White Paper                        Version 2020-Jan-15 

6 

 

7. System Architecture 65 

7.1. KILT Overview 65 

7.2. KILT Protocol 66 

Identity Management 66 

Creating, Registering and Publishing a CTYPE 67 

Claim Structure 73 

Request for Attestation 73 

Quote 75 

Attestation and Revocation 76 

Verifying a Credential 80 

Complex Trust Structures 80 

Communication and Messaging 84 

KILT Blockchain 92 

7.3. KILT SDK 94 

8. KILT Network Launch Roadmap 95 

8.1. Testnet Overview 95 

KILT Blockchain 95 

Demo Client 95 

Centralised Demo Services 96 

8.2. Screenshots of the Implemented Testnet Ecosystem 97 

Telemetry Service 102 

Blockchain Explorer 102 

8.3. Release Roadmap 102 

Testnet: Mash-Net 102 

Persistent Testnet: Wash-Net 103 

Mainnet: Spirit-Net 103 

GDPR Considerations 104 

EU Privacy Rules 104 

Definition of Personal Data 104 

General Data Subject Rights 105 

How the KILT Protocol protects data 105 

Legal Note 108 

Imprint 108 

Final Comments 109 

 

  



KILT White Paper                        Version 2020-Jan-15 

7 

 

1. Why the Internet Needs a Trust Network 
It is widely accepted that the internet needs a distributed online trust framework to solve 

overarching problems of representing trust among participants all around the world who are 

generally unknown to each other. We aim to solve these challenges by incorporating a network 

approach into the core functionality of the current internet. 

1.1. Trust on the Internet 

Ten years after the World Wide Web went online and the Internet has gone fully commercial 

and self-sustained, researchers have already judged that "of all the changes that are 

transforming the Internet, the loss of trust may be the most fundamental." In the light of the 

significant risks to fall prey to abuses by malicious actors, "the simple model of the early 

Internet – a group of mutually trusting users attached to a transparent network – is gone 

forever."1  

Evolution of Trust through Cooperation 

To understand why it is hard to establish trust in the internet’s disembodied and spaceless 
interactions, it is essential to highlight how trust is tied up with cooperation. Somewhere along 

their evolution, humans have learned to leverage the superpowers of cooperation. We do 

things together we could not do alone and share the benefits amongst us. We invest by helping 

others, hoping to be supported later when we may need it. And we heavily and daily rely on 

information shared with us, where it is impossible to find out everything for ourselves. But while 

cooperation is of utmost importance for our modern way of life, it is also delicate and vulnerable 

to exploitation: in fact, many are puzzled that cooperation could occur at all in nature, given 

that it may likely break down as soon as a few malicious actors are introduced who take 

advantage of the other's support, hurting them in the process. In such an environment it would 

be rational for actors to cease cooperation in order to avoid being exploited and cheaters 

gaining advantage over them. 

 

One of the reasons that we are still able to rely heavily on cooperation is that we have learned 

to decide when to accept the risk that comes with it: whom to trust and whom to refuse 

cooperation and thus sort out the bad apples. Trust is hence a filter or protection mechanism 

and an enabler at the same time, allowing us to take the necessary risks and "bridge the gap 

to the unknown"2 – which basically means that trust enables us to explore and grow our 

abilities. 

 

Additionally, trust may be defined as a state where subjective information can be reliably 

assumed to be objective. For example, Bob tells you that Alice is married. If you trust Bob, 

 
1 Blumenthal, Marjory S. & Clark, David D. (2001): Rethinking the Design of the Internet: The End-to-
End Arguments vs. the Brave New World, ACM Transactions on Internet Technology, 1: 70-109.  [pdf] 
2 Rachel Botsman, The currency of the new economy is trust, TED talk, last accessed on 19th March 
2019. 

http://nms.lcs.mit.edu/6829-papers/bravenewworld.pdf
https://www.ted.com/talks/rachel_botsman_the_currency_of_the_new_economy_is_trust?language=en#t-641830


KILT White Paper                        Version 2020-Jan-15 

8 

 

you will believe him and will not ask Alice out. If you don’t trust Bob, then you might decide 

that Bob simply wants to eliminate a competitor3. 

Forming Trust Relationships 

People form trust relationships with each other based on multiple factors, but it all boils down 

to the relevant information one has about the other person. Based on what Alice knows about 

Bob, she constructs her argument that relates to the trust she puts in Bob. This argument may 

be constructed from multiple types of patterns4, such as direct experience (e.g. she met him 

at a bar and has a personal impression of him) or mutual goals (both of them trying to adopt 

recycling in their common workspace) and beliefs (sharing political views). Additionally, there 

might be other patterns for Alice to consider which are rooted in environmental or social factors 

(e.g. reputation, authority, etc.). 

 
Forming new trust relationships is based on the information we have about the other person. 

 

Forming a new trust relationship is a distinct transaction between two (or more) parties and in 

some cases, these relationships are only used for one transaction (e.g. Alice buys a necklace 

from a friendly merchant at the local market while she is travelling in Peru). However, in many 

cases a trust relationship is built up and maintained through an iterative process5 and is 

determined by the consecutive reciprocal behaviour of the participants (e.g. relationship 

between Alice and her new employee at her company). In these cases, as a general principle, 

one will grant trust to those people, who have already cooperated with her in the past, making 

it more likely that the relationship will be beneficial for her in the future6. 

Problems of Creating Online Trust 

Trust seems hard to come by when interaction partners remain anonymous or pseudonymous 

and may as well be living on the opposite side of the globe. This challenge is also a direct 

consequence of the dramatic growth in number and cultural diversity of people and businesses 

connected to the internet. In face-to-face communication people have an abundance of 

information at their disposal on which to judge the trustworthiness of others: from a first, 

superficial impression to many little cues such as facial expressions, posture, or emotions 

 
3 Bulkin (2018): Curate This: Token Curated Registries That Don’t Work,  
as seen on 10th December 2019. 
4 For a more in-depth analysis and discussion about the patterns for constructing trust relationships see 
Parsons et al. (2014): Argument schemes for reasoning about trust, Argument & Computation 5: 160-
190. 
5 Both one-time and iterative trust relationships can be simply modelled with the Prisoner’s Dilemma 
game theoretic model. 
6 Heintz, C.; Karabegovic, M. & Molnar, A. (2016): The Co-evolution of Honesty and Strategic Vigilance, 
Frontiers in Psychology 7: 1503. 

https://blog.coinfund.io/curate-this-token-curated-registries-that-dont-work-d76370b77150
https://en.wikipedia.org/wiki/Prisoner%27s_dilemma


KILT White Paper                        Version 2020-Jan-15 

9 

 

conveyed in the way they speak. On the internet, little to nothing is revealed about the people 

we interact with and what is disclosed might just as well be untrue. The problem to establish 

trust online, then, appears to come down to an accountability problem on one hand and a 

bootstrapping problem on the other. These issues can be analysed when turning to currently 

existing implementations that aim to provide solutions for building trust online on a secure 

communication substrate. 

Accountability 

The fact that online interactions frequently take place between geographically, culturally and 

socially remote individuals massively reduces leverage to hold trust partners accountable. 

Even more so, as individuals are often further shielded by aliases, under which online 

interactions usually take place. Seeking redress, personally or legally, may be close to 

impossible under these circumstances, and reputational damage is limited to the internet alias. 

Stakes are low for malicious actors to create new aliases, and this lowers trust in the system.  

Bootstrapping 

The accountability problem could be alleviated by disclosing personal information (such as a 

physical address) to the partner in a newly formed trust relationship. However, this process 

faces the problem that there is little reason to trust this information if the source is the individual 

in question. Any third parties vouching for the individual to back up the claims made about 

itself in turn face the same challenges to establish their own trustworthiness. This continues 

ad infinitum if no entity can be found that is ‘close enough to home’ (namely, a trusted root 

authority) to be held accountable, or in some other way able to credibly assert its 

trustworthiness. 

Current Solution Proposals and their Limitations 

The solution to these problems must build upon public key cryptography that a sender can 

use to securely communicate with a recipient without meeting and sharing a secret with each 

other. However, as the internet is an open communication channel, attackers may intercept 

communication by impersonating the designated recipient, convincing the sender to encrypt 

messages with a public key that in reality is part of the attacker’s key pair. Therefore, trusted 
associations of a public key with the designated recipient of a message is essential for secure 

communication as a basic building block to build up online trust relationships. Different 

solutions based on public key cryptography have been put forward to solve these problems of 

online trust. 

Public Key Infrastructure (PKI)  

In a hierarchical Public Key Infrastructure (PKI) public keys are associated to a recipient by 

means of signed certificates issued by Certificate Authorities (CAs) or their delegates. Trusted 

CAs are selected by application (browser, email client, etc.) vendors in most cases and 

represent single points of failure in the system: if a CA can be convinced to sign a certificate 

associating an attacker’s key with a service or website, any communication with that site can 
be intercepted.7 

 
7 For in depth discussion on the pitfalls of the current PKI system see: 
https://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-governments-fake-ssl, 

https://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-governments-fake-ssl


KILT White Paper                        Version 2020-Jan-15 

10 

 

PGP Web of Trust 

The Pretty Good Privacy (PGP) Web of Trust (WoT) is an orthogonal solution to the above. It 

employs direct peer-to-peer trust and customisable vetting schemes instead of trusted 

authorities, leaving it to the user to decide whom to trust and from whom to accept referrals. 

But for numerous reasons (limitations of the PGP certificate format, a nightmarish usability of 

the key signing process, barrier is high to introduce a new key association as a trusted identity, 

dependency on key servers for revocations, etc.) the Web of Trust has not found sufficient 

adoption to gain traction. A critical point appears to be that just as PKI forced users to adopt 

a hierarchical trust model, PGP forced users to adopt a peer-to-peer key signing party model, 

however the code would also be able to support hierarchical trust models.8 Trusted authorities 

are part of many use cases, especially in corporate or governmental organisations or when 

the attribute to be verified is established only through the authority or expertise of a select few. 

Additionally, the PGP WoT did not account for the fact that different users/entities may be 

qualified to verify only some traits and not others, meaning they should also only be trusted to 

sign specific types of information. The PGP WoT does not offer a straightforward solution to 

making these limitations. 

 

Reputation Platforms 

Many web platforms implement reputation systems as a ‘wisdom of the crowd’ approach to 
establishing user’s trustworthiness to solve the bootstrapping problem. These systems gather 
a collective opinion in order to build trust between users of an online community. Reputation 

systems recreate what people do offline to establish who is trustworthy: gossip, exchange 

experiences, give recommendations, etc.  

 

These, however, only appear to work as part of larger community management schemes 

curated by the platform provider. The curation may include bans of accounts that spam the 

reputation system or that have been reported by users, as well as the verification of personal 

details of users by the platform provider. This comes as no surprise: if affirmations made by 

an anonymous user cannot be trusted without further support by a trusted third party, why 

should an anonymous crowd stipulate any more trust? As a pitfall, most reputation systems 

do not allow users to filter who they deem a credible judge of trustworthiness and in which 

matters. Namely, these platforms are often so general that they offer little information in what 

domain the rated user can be trusted.  

Some proposals aim to solve these issues through Token-Curated Registries (TCRs). We 

address these in Chapter 5, where we introduce our Token-Curated Attester concept. 
  

 
https://www.wired.com/2010/03/packet-forensics/, as seen on 15th March 2019. 
8 Berners-Lee, Why did the PGP Web of Trust fail? 
https://medium.com/@bblfish/what-are-the-failings-of-pgp-web-of-trust-958e1f62e5b7,  
as seen on 15th March 2019. 

https://www.wired.com/2010/03/packet-forensics/
https://medium.com/@bblfish/what-are-the-failings-of-pgp-web-of-trust-958e1f62e5b7


KILT White Paper                        Version 2020-Jan-15 

11 

 

1.2. Arguments for a Network Solution 

We believe that an argument for a network solution can be made from contrasting the 

dynamics and challenges the platform web is currently facing with the multi-stakeholder 

government of the internet’s core protocols. Lessons drawn from these considerations will 
motivate KILT’s solution approach, as we believe that a network solution can remedy some of 
these difficulties. 

End-to-end Principle 

When the core protocols of the internet and the World Wide Web, such as TCP/IP, were first 

conceived and implemented, many of the design decisions made were guided by what we 

know today as the end-to-end principle. Its rationale is to develop minimalistic protocols that 

focus on efficient transmission of data between two end points on the network, while remaining 

application-agnostic and indifferent to the specific types of data they exchange. The protocol 

layer focuses on efficient data transmission in the network. However, on the network, 

application-specific functionality is implemented in the endpoints connected via the protocol 

layer. Keeping the core protocols lightweight is meant to improve efficiency and speed by 

avoiding overhead and potentially makes them more reliable and easier to upgrade. It also 

reduces the number of specifications that all parties need to agree on. 

Standardisation for Interoperability 

The language which we use is a fundamental aspect of cooperation. It allows for naming 

certain things and through words and sentences we are able to convey what we mean. The 

language is thus an objective standard which we can use to compare things and decide if they 

are truly the same or not. However, the proliferation of languages hindered the efficient 

interaction of people already during the early cultural evolution (take for example the Biblical 

story of the Tower of Babel). To alleviate the burden of friction and inefficiency of requiring 

translations of laws and employing a large number of interpreters, empires introduced 

standard languages9 to streamline the everyday life of citizens (e.g. Latin in Roman empire). 

Current day example is the de facto standard language of English in aviation, science, etc. 

 

As a major problem, current solutions lack a standardised language for managing trust 

relationships on the internet and this is paramount for the interoperability of trust networks. 

Internet Governance 

It is in fact not a trivial task to reach such an agreement among all peers in the network. 

Participants must agree on a common language to be able to exchange and propagate 

information on the network. The internet as a communications network is a typical coordination 

problem as discussed in economics and social science: incentives for all implicated parties 

are largely aligned and favour a cooperative solution. In this case, participants need to agree 

on a common standard in order to be able to harvest the benefits of global interconnection 

and interoperability. Dissonance can only arise through differing preferences as to what the 

common solution should be. But no single company or national government can oversee the 

 
9 Standard Language, https://en.wikipedia.org/wiki/Standard_language, as seen on 17th March 2019. 

https://en.wikipedia.org/wiki/Standard_language


KILT White Paper                        Version 2020-Jan-15 

12 

 

multitude of interconnected autonomous networks and systems that is the internet. In absence 

of a central authority able to legitimately issue binding standards and specifications, these can 

only develop and uphold if they are multilaterally backed by the network’s peers. 
 

In addition, these specifications are necessarily public domain, and individual payoffs for the 

significant efforts of developing or improving them are low by extension, as benefits are 

harvested by all participants in the network. Nevertheless, the internet does have working 

governance schemes in place. Currently, several bodies are tasked with the ongoing 

development of standards and specifications (non-exhaustive list): 

● The Internet Protocol suite (TCP/IP, message routing and transport protocols) is 

maintained and developed by the Internet Engineering Task Force (IETF), which 

operates under the umbrella of the Internet Society (ISOC). Standards are published 

in the form of Requests For Comments (RFCs) through the ISOC. The ISOC has more 

than 100,000 organisational and individual members.  

● The Internet Corporation for Assigned Names and Numbers (ICANN) oversees 

domain name (DNS) and IP address allocation. As a central body with administrative 

authority, for example controlling registration of Top-Level Domains, it has created 

controversy10, amongst others, through its association with the US Ministry of 

Commerce. 

● The World Wide Web Consortium (W3C) develops the core specifications for the World 

Wide Web such as HTML and its successors, CSS, XML, etc. Members are 

universities, businesses, non-profit organisations, governmental institutions, and 

individuals. Standards and specifications are published under the name of 

Recommendations. 

Some Challenges of the Platform Web 

Governance of the internet architecture is thus distributed and consensus-based. However, 

this mostly does not apply to functionality on the network, i.e. in the application layer. Many 

Web 2.0 services and applications have the sole function of being a mediator and facilitator, 

connecting individual users on a platform for the purpose of exchanging information or 

services. Functionality (e.g. storage of user data, search tools, rating/recommender systems, 

etc.) built around the specific purpose of a platform (e.g. social networking, ride sharing or 

private sales) may be regulated in part by the respective laws of countries in which the user 

and the platform provider reside and may indirectly be governed by the user base, as far as 

the platform provider’s economy depends on it. But ultimately, the system for interaction 

remains proprietary and users typically have little redress when their specifics or the terms for 

their use change, while the majority of the economic value is captured by the platform 

providers. 

The end-to-end design principles most certainly have a key role in the internet’s success story, 
allowing it to cater for even unanticipated new applications. But it also has a role to play in 

why the internet, and particularly the World Wide Web, has not become the utopian, egalitarian 

 
10 by famously refusing systematically and over years to register the Top-Level Domains .halal and 
.islam, while at the same time registering the .sucks gTLD, which now targets trademark holders with 
exploitive schemes. 



KILT White Paper                        Version 2020-Jan-15 

13 

 

space many saw coming in its early days, but has instead produced winner-take-all markets 

and mega-corporations that have grown to the size and power of nation states.  

 

By defining the internet as a transport medium and putting the place and the responsibility for 

any kind of more specific functionality in the edges, it has favoured individual solutions by 

individual actors even for very common and recurrent functionalities. For the Web, this initially 

showed with the first large scale service providers developing around discovery and directory, 

which gave rise to internet giants such as Yahoo and Google. It became particularly clear, 

however, when the Web transitioned from a retrieval system for mostly static displays and 

information to an interactive and individualised experience. The original internet protocols did 

not implement user identification and could not maintain state. Service providers thus came 

up with a wide range of solutions and formats to store session and user identification data and 

user-generated content11.  

 

The architectural decisions to build the Internet as a rather thin networking and transport layer 

of universally accepted protocols have certainly contributed to the current shape of the Web, 

which could be characterised as follows: 

(A) Service/Application providers silo user data. Since different application providers use 

a variety of formats to store user data and content on their servers, along with differing 

technologies for user identification, data is usually very hard to integrate. At the same 

time, for social networks such as Facebook, Instagram, or Twitter, or sharing economy 

platforms such as Airbnb and Uber, the user base and its data are the most valuable 

assets. Thus, in the absence of incentives to share data and with major hurdles to 

overcome to do so, users are unable to use their profiles and data in any other context. 

This creates dependencies hindering competitors to enter the market. 

(B) A single party may control vital parts of the network’s functionality. Private corporations 

owning and developing a particular service and the respective endpoints means they 

control who can access it and who can build integrations or contribute to development. 

They are also free to shape the service at their whim, compelling them to follow their 

user’s needs and wants only if that is in their best interest. 

(C) Innovation happens at the edges of the network. Because value is captured in end 

point applications, incentives are high to invest in newer and better applications and 

technologies. Incentives to improve the networking and transport protocols are 

comparatively small, being further complicated by the need to coordinate the efforts of 

many parties with possibly conflicting and competing interests. The network thus 

mainly grows and matures by virtue of new services connecting to it. 

  

 
11 The stateless nature of HTTP and IP made the early server architecture of the web simple since the 
servers did not need to store and maintain information about the state of a client-server interaction.  

https://en.wikipedia.org/wiki/Stateless_protocol


KILT White Paper                        Version 2020-Jan-15 

14 

 

1.3. Where we see the Opportunity Through Blockchain? 

Why We Think Blockchain is the Solution 

Blockchains embody a network solution to features which internet protocols previously could 

not implement. They are constituted by a network of participants implementing a single 

protocol to agree on a common representation of state. Blockchain enables decentralised data 

and identity management by employing a ledger that provides immutable single source of truth 

that all involved parties (Claimer, Attester, Verifier) can trust. 

What is the Role of Blockchain-Technology 

Blockchains have two properties that remedy the problems outlined above: (A) they are able 

to self-organise through incentivisation mechanisms, (B) they can, and to some degree must, 

implement distributed governance structures that give participants in the network parts of the 

power to decide on the shape and future of the common protocol. 

Network Solution through Blockchain 

Taken together, a network solution will, by implementing functionality in the network rather 

than in its edges, distribute both the responsibility for and power over the solution among 

stakeholders, while also sharing the spoils among them.  

Service/Application providers cannot silo user data. 

Data is stored or indexed publicly in a blockchain solution. If a given functionality is offered by 

a blockchain solution, no single party can monopolise the data it generates. It either remains 

with the data subjects, with proof on the chain, or is available for everyone. Anyone can build 

and connect new solutions using these data, preventing monopolistic market dynamics. 

No single party may control vital parts of the network’s functionality. 
Permissionless open solutions are always governed by nodes and validators or by token 

holders and can be complemented with democratic governance structures that facilitate 

consensus on updates to the underlying protocols. Also, nobody can be shut out for political, 

competitive, or arbitrary reasons. 

Innovation and value creation move to the protocol layer of the network. 

Blockchains are incentive machines; part of the principles which they operate on is to reward 

participants for sustaining the network and furthering its development. They offer new ways to 

compensate contributors through block rewards or investment pools and create new 

incentives for protocol innovators (ICOs) which makes creating free-to-use open-source 

protocols economically attractive. Consequently, any holder of a token of a specific network 

invests in this network. If the network grows and the token value rises, the holder benefits. 

The value creation of blockchain networks are evenly distributed to all token holders instead 

of being siloed in a single company. This might be the most dramatic effect of blockchain 

networks: they democratise the profit of successful systems.  



KILT White Paper                        Version 2020-Jan-15 

15 

 

1.4. Conclusion 

Value can be captured on the protocol layer. 

The original internet lacks a series of 

concepts, which turned out to be necessary 

for the commercial internet. The three core 

concepts in this regard were search, 

identity and payment. Commercial 

companies stepped in, providing services 

for these concepts on application level. 

Unfortunately, the structure of the internet 

leads to monopolies and  

this is why those companies today are the 

most valuable ones on the planet. While 

regulatory measures against these 

monopolies seem to have little effect, we 

believe that fostering the protocol level can solve the problem. Blockchain technology gives 

us the power to implement basic services like identity or payment on protocol level. Protocols 

are common good, as they belong to everyone and anyone is free to use them. The value, 

which was accumulated by the companies on the application level in the Web, could be 

accumulated directly in the protocol, with everyone who invests in the network by using its 

token benefitting from it. 

Protocols can acquire economic superpowers. 

When protocols are accepted as standard means of communication, they can provide 

investment security for new businesses. It is completely safe to build an email client based on 

SMTP, because it is absolutely sure that it will be able to communicate with all email servers 

worldwide. For the protocols of the internet, this security generated new business ideas and 

the possibility to invest. HTTP for example has created millions of jobs, most of them in 

businesses the creators of HTTP could not even imagine when they defined the standard. 

Data belong to their producers and not to service providers. 

Commercial companies collect siloed identities. They often know more about the consumer 

than the consumer himself. This is not only questionable in times of GDPR, it also leaves a 

1984 feeling with the people. We shall store the properties of an entity at the entity itself on 

the end user’s device or (encrypted) on a cloud service of the user’s choice. The entity 
ultimately decides which part of its data, for which purpose, and with whom it wants to share 

it with.  

Existing data silos should be made interoperable. 

We understand that the existence of data silos will not end with a new protocol coming up. We 

want to incentivise owners of silos to make them interoperable through a protocol. This will 

provide more freedom and more convenience to the end user. 



KILT White Paper                        Version 2020-Jan-15 

16 

 

Standardisation could be a key to success. 

Interoperability needs consensus on data formats. Credentials often constitute complex data 

structures. If we want to foster interoperability, we must enable the creation of standards for 

credentials. This standardisation will also provide investment security to companies which 

build applications for certain types of credentials.  

Providing trust can turn into a relevant business model for many 

companies. 

For any protocol adoption is key to success. Adoption will be high if commercial companies 

find business opportunities in using the protocol. It is necessary to provide business incentives 

to players in the trust ecosystem. We shall find ways to enable entities, which own trust or are 

able to build trust, to monetise this trust using the protocol. 

Mapping of existing organisational structures is essential. 

We recognise and accept existing trust structures even if trust is often not earned but defined 

by authority. These structures exist in companies, in governments, and in our daily lives. It 

would be futile to develop a solution which ignores these structures.  

1.5. Solution Statement 

In the following chapters we will outline KILT Protocol as we see it from today’s perspective. 
KILT is a blockchain-based fat protocol. 

 

The current state of KILT Protocol (Test Net) already includes the following functionalities in 

its basic, preliminary form: 

 

● Enabling parties to claim arbitrary properties about themselves (where a party can be 

a person, an organisation or an object) 

● Providing mechanisms to define the contents of such claims in a structured way 

● Enabling trusted parties to select attractive claim structures and attesting claims of this 

type and issuing credentials to the claiming party 

● Moving data sovereignty to the claiming party by giving it full control over the credential 

● Providing a blockchain where the validity of a credential can be verified by anyone who 

the credential is presented to 

● Offering mechanisms to build complex trust structures for authoritative (top-down) trust  

● Decoupling the verification process from the Attester, creating huge scalability and 

privacy 

● Solving the revocation problem of P2P Network approaches through blockchain 

technology. 

 

In the future we would envision that KILT Protocol also 

 

● Provides a Zero-Knowledge-based solution where the validity of a credential can be 

verified only by someone who was entitled to do this by the claiming party 



KILT White Paper                        Version 2020-Jan-15 

17 

 

● Builds an ecosystem where Attesters can monetise their earned trust but depend on 

their continuous accountability  

● Provides a novel organisational structure  to build earned trust by introducing the 

(bottom-up) Token-Curated Attester concept. 

  



KILT White Paper                        Version 2020-Jan-15 

18 

 

2.  Top-Down Trust Structures in KILT 

KILT Protocol aims to enable the digital representation of real-life trust relationships across all 

kinds of entities. In this chapter KILT Protocol is introduced by describing a set of basic roles 

and functionalities which represent a simple infrastructure that shall be used for building digital 

representations of conventional top-down trust structures.  
 

Top-down trust implies that there are entities which are trusted by other entities because of 

their status, their reputation, or just by definition. Trusted entities in this sense can be for 

example 
● Government agencies, like the chamber of commerce 

● Structures defined in companies, like the person responsible for issuing user rights 

within the company’s network 

● Commercial entities, like a company entitling a user to access a service 

● Persons or other entities having earned a good reputation 

● Machines or artificial intelligences designed to make decisions on claims from other 

entities, like a ticket vending machine in public transport 

These trust structures exist in our current world. Therefore, a system dealing with trust needs 

to recognise them and must propose a way of representing them on a technological level. 

2.1. Current Problems with Trust Structures on the Internet 

Identity is the core function of trust relationships between physical 

individuals, devices, or any forms of legal entities like businesses, 

organisations, and governments. Identity in this context also 

refers to unique data that defines the properties, characteristics 

and qualities of persons, groups and things. With the rapid 

technological evolution and its consequences that we see for 

example in social networks, the use of artificial intelligence, 

autonomous vehicles on our doorstep, and the emerging 

decentralised governance structures, in short the digitalisation of 

all aspects of our daily lives, require a change of the fundamental 

trust structure of the internet.  

 

Right now these trust structures are dominated by centralised 

powerful service providers. For example, when a user wants to 

access a service, she normally registers by proposing a 

username and a password. If the username does not yet exist, 

the password meets certain criteria and some other checks are 

performed successfully, the user is granted access to the service. 

The username/password combination is stored in the database 

of the service. The same combination is also known to the user. 

Consequently, service and user share a secret. As many users undertake this procedure if the 

service is attractive and thus successful, the database accumulates a big number of 

username/password pairs. This is a security risk, as an attacker only needs to break into one 

system to gain access to a large number of secrets. 



KILT White Paper                        Version 2020-Jan-15 

19 

 

If the user wants to access the service for a second time, she can log in with her 

username/password combination. The service provider checks in its database if this 

combination is known and valid and decides on whether the user can use the service or not. 

This is problematic, because the issuer of the right to use the service and the verifier are the 

same entity. For commercial companies this is an incentive to build closed user groups, which 

leads to monopolistic structures if the service is very successful. In the internet such structures 

can be observed in certain sectors. They seem to hinder innovation because new providers, 

even if their services are better, cannot enter the market due to the monopolistic  

accumulation of users at the established provider. As a result, established providers dwell on 

large user bases and monopolies can only be replaced by new monopolies. 

In most cases the username/password combination also allows entry to one specific service 

only, which results in a lot of passwords a user needs to remember. Many users choose similar 

or identical passwords for many services, which makes attacks on the central databases of a 

large service even more attractive. The username/password combinations stolen there might 

also work for other services. 

The problem described here is even more astounding considering that it was solved in the real 

world many centuries ago by issuing credentials. 

2.2. Current State in the Real World 

Credentials in the real world can be best explained with simple examples: a person might have 

a passport, a driver’s license, a student card, and many more. These Credentials are issued 
by central services. To obtain a Credential, the person (Claimer) has to turn to the central 

service (Attester). Unlike in the internet, the Credential then is not stored with the Attester, but 

with the Claimer, i.e. in the Claimer’s wallet. If the Claimer for example wants to visit a  bar 

where the minimum age is 18, she needs to prove to the bouncer (Verifier), that she is over 

18. If this is the case, the Verifier will let her in. Unlike in the internet, the Claimer can choose 

which Credential she will present. The Verifier will probably accept her student card, her 

passport, and her driver’s license. This provides freedom of choice.  

 
The process of using of real-world Credentials 

The Claimer may also choose not to reveal all the information on the Credential, for example 

by covering her name with her finger while showing the Credential. The bouncer needs to 

know her age but not her name.  



KILT White Paper                        Version 2020-Jan-15 

20 

 

   

The Verifier makes sure that the Credential is an original by checking its security features and 

whether the Claimer matches the Credential by comparing the picture on the Credential with 

the face of the person in front of him. This provides a high level of security (something I have 

+ something I am). In the course of this, the Verifier also checks if he trusts the issuer (Attester) 

of the credential. If he trusts, for example, the government of the issuing country or the issuing 

university, he can also trust the Claimer that she is over 18. 

 

This system is extremely scalable, as the Attester is not involved in the Verification process. 

The bouncer does not check with the university or the Department of Motor Vehicles if the 

person standing in front of him is over 18. The credential together with the person is enough. 

This also preserves a lot of privacy for the Claimer: as the Attester is not involved in the 

Verification process, the university or the state will never find out that she visited this bar that 

night. 

2.3. Solution Statement: KILT Protocol 

KILT Protocol basically applies the already proven real-world processes of issuing credentials 

and enables transparent and permissionless trust structures for the internet. In order to 

achieve this, KILT relies on the following simple concepts. 

Self-Sovereign Data and Identity 

Identity is the sum of characteristics, attributes and 

traits which describe an entity or an object and as 

an individuum distinguishes it from all others. Self-

Sovereign Identity entails:  

● any entity can establish its own identity 

(without the consent of any other entity).  

● the Claimer is in control of her Credentials  

○ can choose which Credentials to 

present to a specific Verifier 

○ has the choice to show only the 

relevant info to a Verifier 

These concepts for Self-Sovereign Identity can be 

used for any other data that is defining an entity or 

an object or that defines qualities or characteristics 

of such entity or object.  

 

KILT is a permissionless system, anyone (or 

anything) could create an identity or define 

qualities or characteristics of such entity and 

therefore become an entity in the KILT network. In 

KILT the identity (that may be connected to any 

piece of data) is created as public-private key pair and then linked to a Decentralised Identifier 

(DID)12. This DID is under full control of the entity which created it.  

 
12 Decentralised Identifiers (DIDs) v1.0, last accessed on 2020.01.15. 

https://w3c.github.io/did-core/


KILT White Paper                        Version 2020-Jan-15 

21 

 

Roles 

Any entity can take on any of the following three basic roles in the network. 

Claimer 

The Claimer is an entity (an individual, organisation, or object) that claims something (a 

property) about itself using its decentralised identifier and stores this Claim in its client wallet 

software (see Chapter 7 for technical details). In KILT the Claimer always signs the claim, 

which proves that the creator of the claim is the same entity as the owner of the claim (i.e. a 

Claimer is always the origin of the Claim)13.  

 
In KILT a Claim is always based on a Claim Type definition (CTYPE), which is a well-defined 

data structure expressing a specific set of properties and rules for a certain type of claims.  

 
Claimers are not inherently trusted by Verifiers. They rely on Attesters and the trust those 

Attesters provide for their interaction with Verifiers. The Claimer can request an Attester to 

validate and confirm with his digital signature that the Claimer’s Claim is true (i.e. to attest the 

claim). The attestation is issued by the Attester, sent to, and stored with the Claimer. We call 

these attested claims Credentials. 
The Claimer may then present the credential to any Verifier. As the Credential is stored in 

the storage of the Claimer, the Claimer controls  

● who to present the Credential to  

● which Credential is presented and  

● which parts of the content of the Credential she makes visible to the Verifier.  

Attester 

Attesters are trust providers who receive Claims, validate them, and confirm them by issuing 

attestations for them. In other words, they create Credentials by cryptographically signing the 

attestations and sending them back to the Claimers.  

 

Any Attester will only be prepared to check and confirm a limited range of properties. 

According to these capabilities the Attester chooses one or more Claim Types (CTYPEs) 

offering to attest them for interested Claimers.  
 

In this process Attesters perform actual work as they must check the validity of Claimer’s 
assertions. Consequently, Attesters in KILT can choose to be compensated. In the current 

internet this compensation is done through the data the Attesters receive from the Claimers 

and store in their private data silos. In the KILT network the Credential remains with Claimer. 

KILT Protocol offers a mechanism for Claimers to pay for the work of Attesters by transferring 

KILT tokens to an Attester.  

 

 

SSI Box: The definition is from the Blockchain Bundesverband’s position paper about Self-Sovereign 
Identity. 
13 KILT protocol cannot control the content of the Claims and in theory a Claimer could claim something 
about someone else. There are cases where this might be needed (e.g. family status with a spouse) 
and we plan to address these use cases in KILT protocol as well. 

https://www.bundesblock.de/wp-content/uploads/2019/01/ssi-paper.pdf


KILT White Paper                        Version 2020-Jan-15 

22 

 

In order to receive or keep up reputation amongst Verifiers and Claimers, Attesters need to 

be careful to attest only Claims they checked and found to be valid. If they fail to do so, they 

might lose the trust of their Verifiers, which would make their Credentials worthless and could 

destroy their business. Attesters compete for the attestation of claims. The Claimers can select 

the Attester who best fits their needs (price, speed of attestation, supported Credential types, 

number and importance of Verifiers trusting their Credentials). This creates business 

opportunities for Attesters (see Chapter 3 for details).  
 

Additionally, Attesters can amplify their trust by cooperating with other attesters or can 
delegate trust to other entities (see Section Building Top-Down Trust Structures for details). 

Verifier 

The Verifier creates the demand for attested Credentials as he offers a service to Claimers. 

As the Claimers are not inherently trusted by the Verifiers, the Verifiers rely on the Attesters 

and the trust they provide. For example when using a passport to cross a border, the Attester 

(issuing government) and the Verifier (border control agent of another country) are linked only 

by trust. In other words, the Verifier is an entity that receives Credentials from Claimers and 

performs an action desired by the Claimer if the Verifier recognises the Credential as valid. 

Verifiers decide which Attesters they trust. Claimers will select Attesters which are trusted by 

Verifiers and are relevant to the Claimer’s 
use case.  

 

Verifiers identify Claimers through a 

Cryptographic Challenge. This prohibits the 

unauthorised use of stolen Credentials and 

man-in-the-middle attacks. KILT uses 

Merkle Trees to ensure that Credentials can 

be validated against hashes retrieved from 

the KILT Blockchain, even if the Claimer 

only reveals parts of the information inside 

the Credential. The details of these features 

are explained in System Architecture. 

Roles and Processes 

● The Claimer is an entity which 

states to have a certain property (i.e. 

Claim) and can request an Attestation.  

● An Attester answers a Request for Attestation in an affirmative way, which is called 

Attesting the Claim (i.e. issuing a Credential). 

● The Verifier is an entity which will perform, on request, a certain Action for a Claimer 

who shows proof of having certain properties (i.e. Verifying the Credentials).  

Comparison to Current Standard Proposals and Definitions 

There are several organisations and communities aiming to define the terminology and the 

different roles and processes in the Self-Sovereign Identity ecosystem. This chapter describes 

how the roles and processes on which KILT protocol shall be based differ from the current 



KILT White Paper                        Version 2020-Jan-15 

23 

 

W3C Verifiable Credentials (VC) Data Model14 standard proposal. The W3C Model defines 

the following roles in comparison to the roles defined in KILT: 

 

KILT W3C Verifiable Credentials 

Claimer Subject and Holder 

Attester Issuer 

Verifier Verifier 

 

The first and foremost difference is that the VC model differentiates between the Subject and 

the Holder of a Claim or Credential. Subject is the individual, entity, or thing that a given Claim 

or Credential is about or relates to. Contrary to KILT, the VC model allows a Claim or a 

Credential to be about multiple Subjects. In the VC Model it is assumed that the process starts 

with the Attester, proposing properties of Claimers, while KILT assumes that the Claimer starts 

the process by proposing properties of herself. While this might only be seen as a conceptual 

difference, we are of the opinion that Claimer entities should be the origin of these trust 

relationships. 

Holder is the individual or entity in control of the digital wallet or agent that stores and controls 

the use of a given claim or credential about a Subject. Often the Holder and Subject will be the 

same entity, but there are cases where they may be different (e.g. a parent may be the Holder 

of a digital passport for their child who is the Subject of that credential). KILT currently does 

not distinguish between the Subject and the Holder of a claim or credential. Instead, both roles 

are unified in the role of the Claimer. We believe that the distinction of roles (Subject vs. Holder) 

could be solved on the application level and, if so, the KILT Protocol could stay lean. Since the 

standardisation process for this concept is under work, it will be followed closely and might 

result in a later adaption.   

 
14 The W3C Verifiable Claims Working Group states that the definition of the roles is still under 
discussion and therefore not final. https://w3c.github.io/vc-data-model/ as seen on 30th January 2019. 

https://w3c.github.io/vc-data-model/


KILT White Paper                        Version 2020-Jan-15 

24 

 

Claim Types (CTYPEs) 

Enabling systems to communicate about 

properties of entities requires not only 

standardisation on how systems 

communicate, but also on what they 

communicate i.e. the content structure of 

Claims and Credentials. As it is impossible to 

standardise the content structure for an 

infinite number of use cases, KILT utilises the 

capabilities of blockchain technology to 

standardise Claim Types. While the 

standardisation mechanisms are discussed 

later in Chapter 4 & 5, Claim Types are briefly 

introduced here. 

A Claim Type (CTYPE) in KILT is the JSON 

description of a data structure. It contains a 

list of key value pairs, where each value is of 

a defined type. Chapter 7 will further detail the 

rules on how CTYPEs are structured and how 

the KILT SDK offers functions for the creation 

and storage of CTYPEs. 

 

Since it is essential that all parties in one use case agree on using the same CTYPE, KILT 

SDK functions for Claiming, Attesting and Verifying use CTYPEs as an underlying basic 

building block. Attesters publicly announce which CTYPEs they attest. They may also promote 

a list of Verifiers who accept their Credentials in order to receive more requests for Attestation. 

Claimers will use CTYPEs which are widely accepted by Verifiers they frequently use. Verifiers 

are interested in maximising the number of Claimers who can easily use their service. They 

will accept the most common CTYPEs for the use case. This leads to an implicit per-use-case 

standardisation. The creation of CTYPEs is permissionless. Anyone can create CTYPEs and 

reference them on the KILT Blockchain.  

 



KILT White Paper                        Version 2020-Jan-15 

25 

 

Why KILT Needs a Blockchain 

Blockchains provide an immutable yet decentralised log of transactions and we can use this 

superpower to enable revocable credentials and more complex trust structures in KILT. 

However, since the blockchain stores information indefinitely in a public manner, a great care 

has to be taken to conform to the latest privacy laws. 

 

The operation and storage space of blockchains is very costly and they have limited 

throughput. KILT protocol honours these facts by writing as little information on the blockchain 

as possible. Since data written on the blockchain is publicly available and cannot be deleted, 

KILT aims to never write any personal data on the blockchain. Instead, only hash values15 are 

stored on-chain (please see the GDPR section at the end of this chapter for an in-depth 

discussion on this topic.) There are basically three types of information written on the KILT 

Blockchain: the hash of revocable attestations of Claims (Credentials), the hash of claim type 

schemas (CTYPEs), and KILT token payment information. 

Revocable Attestations 

Putting the Claimer in control of 

her Credentials imposes a new 

problem: as the Attester is no 

longer involved in the Verification 

process, he cannot revoke the 

validity of Credentials. That 

would lead to all kinds of 

unsatisfying situations, where 

driver’s licences could not be 
revoked and bullies could not be 

excluded from social networks. In 

addition, Attesters who once 

received the power to issue 

Credentials by an authority would 

be able to do so forever.  

The KILT Blockchain solves this 

problem by writing a hash of the 

Attestation onto the blockchain. 

This way Attestations can be 

securely stored and time can be 

stamped on the KILT blockchain, which then fulfils a notary function and enables credential 

revocations.  

In case of an on-chain Attestation four pieces of information are written onto the blockchain: 

● Public key of the Attester 

● Hash of the Claim that is being attested 

● Signature of the Attester 

● Placeholder field to mark if the Attestation is revoked later 

 

 
15 Hash is a condensed, non-reversible cryptographic transformation of the original data. 



KILT White Paper                        Version 2020-Jan-15 

26 

 

Any Verifier who receives the resulting Credential from a Claimer can hash the Credential and 

check if the identical hash is also present on the blockchain in order to verify that action.  

The Attester has the right to revoke the hash on the blockchain, thus marking it as invalid. 

Verifiers checking for the hash on the blockchain will find out about the revocation (for details 

please read about Revocation in Chapter 7). This process can also be applied to Legitimations 

and Delegations of trust, described later in the section Building Top-Down Trust Structures in 

KILT. 

From a data security and privacy perspective, an Attestation contains hashed Claim data. 

Therefore, it doesn’t reveal the Claim content (i.e. personal data is written onto the chain in a 

hashed format). The content of the Claim is not revealed and the Claim itself is not made 

available on the blockchain. If an entity knows the content of the Claim though, it can verify its 

existence on the blockchain. The public key of the Attester is stored on the chain. This is a 

wanted property which enables Verifiers to determine if the Attester of a Claim is trusted. In 

case of a simple on-chain attestation, only the Attester can revoke his or her attestation. In the 

next section, more complex trust structures are introduced where the right to revocation can 

be delegated to other entities. 

CTYPE 

CTYPEs are credential definition schemas needed for broad semantic interoperability of 

credentials. New CTYPEs will be created and added to the chain by entities which cannot find 

a suitable existing CTYPE for their use case. 

Only the hashes of the CTYPEs are stored on the KILT Blockchain, while the whole CTYPE 

schema is published and stored in a registry service16. When an entity creates a new CTYPE, 

it generates a hash of the CTYPE (by hashing the schema structure) and requests to register 

this CTYPE to the KILT chain identified by this hash. This ensures that entities (Claimers, 

Attesters and Verifiers) can check if a Claim is conforming to its corresponding CTYPE by 

acquiring the CTYPE from a registry, hashing it and comparing it to the CTYPE hash on the 

blockchain. While storing the whole structure of a CTYPE on the blockchain would be a 

wasteful use of secure block space, this concept already creates investment security and 

interoperability amongst the participants of KILT protocol. 

The KILT Blockchain stores the public key of the entity that registers a new CTYPE. It is 

assumed that the public keys of Attesters will be publicly known. In order to do business by 

issuing attestations, they will advertise their services which also means they will publish their 

public keys. 

Payment Transactions 

The KILT blockchain will contain its own cryptocurrency: the KILT Coin. This Coin shall be 

used to incentivise the security and continuous operation of the KILT network. Moreover, the 

KILT Coin shall be used to pay for the registration of CTYPEs, writing Attestations, and issuing 

revocations on the blockchain. The KILT Coin could also be used for paying the Attester for 

the Attestation service.17 While these transactions as such do not incur privacy issues, since 

 
16 BOTLabs will provide a central CTYPE storage registry in the beginning, but anyone is free to run 

their own storage service and store any CTYPEs.  
17 Some of these transactions are already available in the Mash-net and are paid with the Mash Coin - 
therefore we often speak in general about the KILT token which would mean either the Mash Coin or 



KILT White Paper                        Version 2020-Jan-15 

27 

 

all these transactions will be publicly available on the blockchain, one could try to correlate a 

payment from the Claimer to the Attester right around the time the Attester writes the 

attestation on the blockchain. An attacker could determine that a Claimer received an 

attestation for a specific CTYPE (since the attestation contains the CTYPE). In certain cases, 

this might reveal sensitive information about the Claimer, even though the content of the Claim 

will never be revealed. However, it is under consideration that the KILT network might 

implement a zero-knowledge proof-based payment transactions system (e.g. like Zerocash18) 

in the future to solve this issue. 

Quotes 

A Quote enables Attesters to build structured contracts for the service of an Attestation. 

Further explanation can be found in Chapter 7: Quote. 

 

Building Top-Down Trust Structures in KILT 

Many current credential management systems rely on a model where organisations issue 

Credentials about entities. Hence, one organisation attests to various claims by entities. 

However, the level of trust is determined by the trustworthiness of the organisation attesting 

to the claims. This is a rigid and fragmented way of providing trusted attestations to the 

individual elements of one’s complete identity.  
 

As KILT shall be a permissionless network, anyone can become an Attester and provide 

attestations for any Claim. Removing the barrier to being part of the system and to embody 

any role is fundamental to the design of the KILT network. This implies that Claimers and 

Verifiers know which Attester to trust and which not to trust. In other words, the Verifiers decide 

to accept a Claim based on their trust in the Attester. The Verifiers’ trust in an Attester can be 
achieved in different ways. The Verifier might directly trust the Attester. Alternatively, the 

Attester inherits trust through legitimation or delegation from another Attester and the Verifiers’ 
trust in the Attester is derived from a specific trust structure, modelling real-world trust 

relationships.  

 
The next sections describe different ways of how we envision that entities can create trust 

structures in the KILT network. First the principle of legitimation is explained. After that, two 

KILT-inherent mechanisms (Hierarchy of Trust and Private Curated Registries) are introduced 

which we want to manage on the KILT blockchain. 

Legitimation 

Authority by identity is the process of authorising a specific entity based on their identity. These 

processes typically ask the question: "Who are you?"  

 
the Wash Coin or the KILT Coin (referring to the KILT token of the KILT main-net that we plan to call 
“Spirit-net”) as they are available at a certain point of time. See Release Roadmap for details. 
18 Zerocash, https://z.cash/, last accessed on 17th February 2019. 

https://z.cash/


KILT White Paper                        Version 2020-Jan-15 

28 

 

Authority by possession is the process of giving access to a resource to any entity that 

possesses something, like a key. These processes typically ask the question: "Do you have a 

key that fits this lock?"  

The concept of Legitimation in KILT is a simplified model of Object Capabilities for 

authorisation. A legitimation is a Credential by a trusted source that grants specific 

permissions (“capabilities”) to another entity. 

The simplest and most general example: 

Attester A1 legitimises A2 by attesting its 

arbitrary claim. Attester A2 then uses this 

attested claim (legitimation) to serve Claimer C. 

For example: the Chamber of Commerce (A1) 

attests that ACME (A2) is a company. When 

ACME (A2) attest claims related to its own 

business (e.g. attest employee status for 

Claimer C), it includes the Legitimation from the 

Chamber of Commerce (A1) into all of these 

claims.  

 

In detail, this is what happens in KILT between 

Claimer and Attester A2: 

● The Claimer sends her Claim to Attester A2. 

● The Attester sends back the Claim and his legitimations for attesting this CTYPE. 

● If the Claimer is satisfied with the legitimations, she signs Claim and legitimation and 

sends it to the Attester, signalling that she will accept (and pay for) the attestation. 

● The Attester sends the Credential, which includes the legitimation and the Attester’s 
signature. 

 

The above example is theoretically possible without using the KILT Blockchain. This case is 

called off-chain-legitimation. In case of off-chain legitimation(s), the KILT Validator Node 

cannot check the legitimation chain, so it must shift this responsibility to the Claimer 

and the Verifier.  

In case of on-chain legitimations the Validator Node writes all attestations on the chain that 

are requested to be written on chain (e.g. if the attestation should be revocable). This should 

be the normal case.  

 

https://w3c-ccg.github.io/zcap-ld/


KILT White Paper                        Version 2020-Jan-15 

29 

 

When requesting an attestation, it is the Claimer’s responsibility to check if the legitimation of 

the Attester is sound. It also is the Verifier’s responsibility to check if the legitimation chain is 
complete (i.e. no link was revoked) when verifying a credential backed by a legitimation chain.  

The Claimer and the Verifier must be able to access all information that is required to make 

sure that the legitimation chain is valid. This information is included in all attested claims that 

are based on legitimations and the KILT protocol defines processes for such verifications (see 

Chapter 7 for details).  

Hierarchy of Trust 

A Hierarchy of Trust is a hierarchical top-down trust structure where the KILT Validator Nodes 

check the complete authorisation or delegation chain for attesting a specific CTYPE. In case 

of the Hierarchy of Trust, trust is distributed in a “traditional” manner from a trusted root entity 
to additional entities in the system. These models represent real world organisational 

structures of states, government agencies or the corporate world. 

Adopting this concept for KILT means that a trusted root can delegate trust to other entities 

and build a Hierarchy of Trust around a specific use case (i.e. a CTYPE). Starting from the 

root, entities can delegate the right to issue attestations to Claimers for a certain CTYPE and 

also delegate the right to delegate the right to attest and to delegate further.  

These authorised entities will be trusted by the community by virtue of the trust in a parent or 

root delegator. In other words, Attesters inherit the trust directly or indirectly from a trusted 

source or root. Anyone can build its own hierarchy which is essentially a directed acyclic graph 

(DAG) of delegated trust. 

These structures are always stored and updated on the KILT blockchain (using delegation 

transactions described in Chapter 7: System Structure). The resulting delegation chains are 

always available for the Validator Nodes since they are stored on-chain. This means that the 

Validator Nodes write an attestation backed by delegation to the chain only if the delegation 

chain is valid at the time of attestation. This way the Verifier can be sure that the delegation 

chain was valid if the attestation is valid (in contrast to attestations backed by legitimations, 

where the Verifier has to check if the legitimation chain is valid).  



KILT White Paper                        Version 2020-Jan-15 

30 

 

 
Trust relationships between Claimers, Attesters and Verifiers in a Hierarchy of Trust 

For example, Bob can claim that he has a university degree and an Attester, which in this case 

would probably be an employee of the university, checks his claim and issues an attestation 

for it. Now the Verifier might not know and trust the employee of the university. The employee 

obtains trust when the leadership of the university delegates confidence to him through 

the organisational structure of the institution to attest to claims of university degree 

CTYPE. When Bob applies for a job, the recruiter can easily verify his claim of having a 

university degree because the Validator Nodes did check the validity of the delegation chain, 

when creating the attestation. 

 

As it can happen that an Employee loses the right to attest the specific CTYPE of the Hierarchy 

(e.g. leaves a company), this also needs to be reflected in the path of authorisation. In case 

the Department revokes the right of Employee 1 to attest the University Degree CTYPE, it 

issues a revocation of authorisation of Employee 1.  

 

Should Employee 1 later try to issue an attestation for this CTYPE and try to forge the path of 

authorisation, the Validators will not write the attestation on the blockchain.  

Also, the Claimer could present a forged off-chain attestation, but when the Verifier checks 

the authorisation chain on the KILT blockchain, he will not find it and therefore not trust the 

Credential.  

 

Past attestations that happened before the revocation of authorisation remain valid as the time 

of the revocation is later than the time of the attestation. In a Hierarchy of Trust, revocations 

can be done by the Attester itself, or every entity upstream in the hierarchy than the Attester. 

The exact structural and implementation details of the Hierarchy of Trust is described later in 

Chapter 7.  

Private Curated Registries (PCR) 

Private Curated Registries are unordered permissioned lists that emulate rather traditional 

trust models where the Curator of the list has already built a trust relationship with Claimers 



KILT White Paper                        Version 2020-Jan-15 

31 

 

and Verifiers, e.g. established and well-known companies, government institutions, groups of 

individuals that already have a reputation in a specific area, etc. PCRs enable those entities 

to build business on the trust they accumulated, by sharing the trust with other Attesters and 

thus taking responsibility for their actions.  

 

 The Attesters belonging to a PCR gain their trust from the Curator of the list 

 

A PCR serves one specific CTYPE and it is typically a top-down approach for establishing 

trust. A PCR puts the Curator in complete control of the list in regard to who gets accepted to 

or removed from the list as an Attester. From a technical perspective, a PCR is simply a flat 

Hierarchy of Trust where the Curator is the root entity. As an Attester of a PCR inherits trust 

from the PCR which he leverages to do Attestations, he must pay a fee to the Curator for every 

attestation he does that is based on the CTYPE of the PCR and that is utilising the PCR in its 

attestation. If an Attester is part of multiple PCRs, when he creates an Attestation, he clarifies 

in the attestation which PCR’s trust he uses in that specific case. 

The governance of PCR will be defined by the Curator. This will typically be a mutual 

agreement between the Curator and Attesters, where the offer or request can come from both 

sides (request to become listed, offer for becoming listed and giving revenue share in return). 

The curator of a PCR will be able to revoke Attestations by Attesters that are not anymore on 

PCR and acted on behalf of PCR. This might be done by Curators to protect the reputation of 

their PCR.  

PCRs can also be utilised to avoid unwanted flows of money: a department which issues 

official documents does not want the fees to accumulate at the civil servants working 

(attesting) there. In this case the department would establish a PCR with a revenue share of 

0% for the Attesters and 100% for the Curator. All Civil Servants attesting the CTYPE would 

then be invited to be Attesters in the PCR. 

The foreseeable economic models behind PCRs are discussed in Chapter 3 and details of the 

PCR implementation are described later in Chapter 7.  
 

  



KILT White Paper                        Version 2020-Jan-15 

32 

 

3.  KILT Trust Market Economy 

In this chapter, we define what a Trust Market is. We elaborate on the economic aspects from 

the previous chapter and describe a possible future economy built on KILT. We discuss 

potential economic benefits for Attesters, Claimers and Verifiers. Eventually we discuss 

imaginable business opportunities for aggregators, Private Curated Registries (PCRs) and the 

Hierarchy of Trust.  

3.1. Trust Market 

Any opportunity to use trust for receiving rewards is considered as a business opportunity in 

KILT which all together make up the KILT Trust Market that we envision to create. Being in a 

position where one is trusted by others, one could perform attestations and receive payments 

for that. Trust could also be delegated in return for a revenue share of these payments in more 

complex trust structures as with PCRs. Eventually these PCRs shall amplify the trust of 

Attesters that are listed.  

So, there are two ways trust could be marketed: First, trust that Attesters already have could 

be monetised. Therefore, Attesters would have to combine their level of trust with the work 

they perform - the attestations - which could then be monetised by charging the Claimers for 

attesting their claims. Second, trust could be delegated in return for rewards by different 

mechanisms like the hierarchy of trust and PCRs, which have been introduced in Chapter 2. 

The potential economic mechanism behind these structures shall be outlined in the following.  

For marketing trust, it first must be obtained. There are two ways on how an Attester may 

obtain trust: from outside and/or from within the KILT ecosystem.  

In the former, Attesters are trusted through their position in the social/organisational structure, 

e.g. trust in central authorities as it is the case in the traditional, real-life economy. Such trust 

level can be conveyed either through word-of-mouth or through a seal/certificate that is shown 

on the Attester’s website. This seal or certificate can be thought of as an offline legitimation 
which is securely referencing the public key of the Attester. This is a very important step where 

users may relate a cryptographic identity used by KILT to the real-life Attester in question. 

In the latter, trust may be delegated from one Attester (or root trusted entity) to another or 

amplified through network mechanisms. So, the delegation of trust for rewards is both a way 

to market trust but also to receive trust depending on the point of view.  

In both cases users may check whether specific verifiers know and trust an Attester or root 

trusted entity. Once having a certain trust level, demand from Claimers for attestations of a 

specific Attester emerges (assuming the respective CTYPE is accepted by verifier). Since the 

history of (on-chain) attestations done by an Attester could factor into the trust level of the 

Attester, he can enhance the trust of other participants he enjoys through issuing appropriate 

attestations within the system. Having issued appropriate attestations that are accepted by 

various verifiers can lead to good reputation which is an indicator of trust.  

From a technical perspective, trust is originated in the application layer and it is the protocol 

layer that enables to represent and manage the trust relationships. Thus, the trust marketplace 



KILT White Paper                        Version 2020-Jan-15 

33 

 

is not directly implemented on the KILT protocol but rather on the application layer where the 

KILT protocol facilitates the building of the application layer and its Trust Market. 

3.2. Participant Views and Economic Benefits 

This section considers the economic benefits for Claimers, Attesters and Verifiers in the KILT 

network.  

Value Flow in KILT 

The value flow diagram below shows simple exchanges between the Claimer, the Attester and 

the Verifier.  

 
Value and cash flow in the Claiming – Attestation – Verification process 

 

The whole attestation market is based upon the fact that the Verifier does not trust the Claimer. 

So, the Verifier needs a trustful attestation of the claims made by the Claimer. The Verifier is 

more likely to trust a third party with a good reputation because there is no direct conflict of 

interest. So, for the Verifier to trust the Claimer’s claims, they must be attested. This is why 
the Claimer requests claim attests for which he pays a service fee. The attester in turn 

performs the attestation and signs the claim in case it is trustful. With this attested claim (i.e. 

Credential), the Claimer may approach the Verifier who trusts the attestation in case he trusts 

the Attester. This general concept is true for both, off-chain and on-chain attestations. 

However, on-chain attestations have the advantage of time stamping and revocation, so the 

Verifier can be sure that the attestation is still valid. 

  



KILT White Paper                        Version 2020-Jan-15 

34 

 

Claimer 

The KILT network allows Claimers to create claims on the fly wherever they are, in a very 

convenient and easy manner, and transform them to Credentials. Apart from the general 

improvements in convenience and empowerment, there are specific use cases imaginable 

that would improve the user experience for the Claimer. A Credential hashed on the KILT 

blockchain could be more easily reused than traditional Credentials as we expect that an 

immutable proof of a Credential with a timestamp is valued far higher than a traditional offline 

Credential which can be faked more easily. So, there is a chance that a blockchain-based 

Credential created for one Verifier will be accepted by other Verifiers for the same purpose. 

For example, an identity authorisation through a Know Your Customer (KYC) process can be 

more easily reused at another service if stored on-chain since it might be more trusted by other 

banks. Currently, attestations must be done for every service provider (opening a bank 

account, applying for a credit card etc).  

 
Having the hash of a Credential stored on the blockchain, different Verifiers may check the 

same attestation for doing KYC. For a Verifier to accept a particular Credential, the Attester 

who issued the verification needs to be trusted. For example, a Claimer may reuse an identity 

verification he claimed for opening a bank account at Bank A for applying for a credit card from 

Bank B.  

Storing the revocation state of the Credential on the blockchain allows to check the status 

independently of the Attester which is important in case the Attester closes his business or 

has downtime issues19. Generally, when Claimers have stored their Credential on their wallet, 

they may present the Credential to Verifiers including a reference to the hash and the 

revocation status as stored on the blockchain. As a result, Verifiers can be sure that the 

Credential is still valid if its state is not revoked as noted on the blockchain. So eventually 

Claimers are more self-sovereign over their Credentials.  

 
19 “Blockchain Could Make the Insurance Industry Much More Transparent” by Disparte, Harvard 
Business Review, 2011, last accessed on 2019.02.14 

https://hbr.org/2017/07/blockchain-could-make-the-insurance-industry-much-more-transparent


KILT White Paper                        Version 2020-Jan-15 

35 

 

The KILT blockchain solution is bound to high levels of privacy since all Credentials are stored 

off-chain on the user’s device and only the hash of the Credential is stored on the KILT 
blockchain. The Credential stored off-chain is recommended to be only accessible with a 

private key owned by the Claimer, so the data belongs to the Claimer which makes him self-

sovereign over his data. As a result, the Claimer has the opportunity to sell his data to 

advertisers. As data is not burned in comparison to consumer products, the Claimer may sell 

the same data several times to different parties. Data is not oil but can be reused infinitely.  

Attester 

Attesters generally charge a fee for their service 

as they have to perform actual work in making 

sure that the claim is valid, e.g. check if someone 

really has a valid KYC Credential. However, a 

Claimer will only request an attestation which will 

be accepted later by Verifiers, since a Credential 

will be only accepted if the Attester is trustful in 

the eyes of the Verifiers. This has tremendous 

implications on the fees that can be charged 

which will be explained in this section.  

Attesters derive value from being trusted by Verifiers. Both, the quantity of Verifiers that trust 

the Attester and the quality is important. This means that an Attester who is trusted solely by 

one Verifier, that has a huge demand for attestations, may make a lot of business and charge 

high attestation fees. This can be leveraged in a monopoly situation. So, the level of fees that 

can be charged are not only dependent on the demand side for attestations but also on the 

supply side. When supply is great and there is great competition among Attesters, then the 

fees will be lower according to common market mechanisms. When there is low competition 

for one specific claim type for which attestation is however demanded, then the Attester may 

charge high fees.  

There are categories of Credentials where their values depend on the frequency the Claimer 

uses it, e.g. can be used for different use cases with different Verifiers as well as the 

importance of the use case, e.g. the importance of a credential of university degree that is 

needed for applying for a job. A cheap train ticket can be used only once which is why it is 

considered a low value Credential. There are high and low value Credentials as well as all the 

variations in between. Attesters in turn are only trusted for some claim types. Someone who 

has a high reputation in attesting restaurants is not automatically also trusted for attesting KYC 

related Claims. So, there is no absolute level of trust for an Attester but instead it depends on 

the use case. Attesters who do not have the expertise or trust for attesting certain claims may 

leverage other forms of trust such as their social media history to make business for low value 

Credentials like attesting social network memberships, community ratings or peer 

endorsements. A market for attestations of all kinds emerges, even for those of low value that 

serve as weak reputation signals such as account age or number of contacts (e.g. on 

LinkedIn). Anything that serves as a measure of trust can now be marketed in form of 

attestations. Another factor that influences the value of an attestation can be, for example, the 

speed of the attestation process, where a faster process ceteris paribus may charge a higher 



KILT White Paper                        Version 2020-Jan-15 

36 

 

fee. The validity time frame of an attestation also influences its value as well as whether the 

Credential is revocable or not.  

The market for attestation may also expand in the following years since firms may be forced 

to have products attested due to competitive, social or legal reasons. This could make the 

profession of being an Attester more attractive. Attesters may also save costs and improve 

efficiency of attestations on the KILT network since an Attester may use already accepted 

CTYPEs for his own attestations and leverage the groundwork done on KILT. Eventually, an 

Attester’s reputation might be amplified through listings (Private Curated Registry) or through 
obtaining credentials as an expert from a Token Curated Attester which could often be cheaper 

than the establishment of reputation through conventional marketing. 

Verifier 

Checking the validity of an attested claim reduces the Verifier’s risks as data attested by a 
trusted entity is more likely to be reliable. This is especially interesting when Verifiers are 

searching for trust signals they can use to verify a claim of a customer or partner. KILT allows 

one to outsource the validation service to Attesters, so Verifiers don’t have to make 
attestations themselves but instead focus on their core business. This increases efficiency 

and may reduce overall costs.  

Revocable attestations improve the reliability of an attestation even more since the Verifier 

knows whether the attestation is still valid or not. So revocable attestations are more valuable 

to Verifiers since they reduce uncertainty in regard to potential changes in the validity of the 

claim. This increase in value for Verifiers automatically impacts the value of a revocable 

attestation for Claimers. Verifiers may even only accept revocable attestations, so they have 

more confidence in the validity of the attestation.  

Generally, Verifiers are interested in the standardisation of data schemes for the Credentials 

(i.e. CTYPEs) to improve interoperability which is meant to be facilitated by the KILT Protocol. 

Improved standardisation leads to lower friction, lower costs and increased efficiency20. For 

verifying on-chain attestations, an application able to access the information on the blockchain 

is required, and the development of such software will be enabled by the KILT Protocol SDK 

(see Chapter 7 for details).  

Example: Concept for the Food-net 

KILT supports the development of new business models by allowing Attesters to monetize the 

trust they carry, e.g. by issuing certificates that are relevant to their communities. 

Taking a closer look at the food industry, there exists a lot of information about food products: 

ingredients, information about allergens, supply chain, if a product is well tolerated by people 

with a certain medical condition, etc. However, this information is not accessible to everyone, 

because it is stored in different databases that are partly permissioned and that are not 

compatible with each other. The KILT Protocol as a public permissionless blockchain enables 

food producers to get all the different kind of attributes of their products certified and to make 

these certificates available through different channels to the consumer. 

 
20 “Chain Reaction: How Blockchain Technology Might Transform Wholesale Insurance” by Mainelli & 
Manson, pwc, last accessed on 2019.02.14, https://www.pwc.lu/en/fintech/docs/pwc-how-blockchain-
technology-might-transform-insurance.pdf 

https://www.pwc.lu/en/fintech/docs/pwc-how-blockchain-technology-might-transform-insurance.pdf
https://www.pwc.lu/en/fintech/docs/pwc-how-blockchain-technology-might-transform-insurance.pdf


KILT White Paper                        Version 2020-Jan-15 

37 

 

  

An estimated 7% of the German population suffers from a food allergy which, in the most 

severe cases, can result in a deadly allergic shock. This is one of the reasons why it would be 

of advantage to provide a register of food related information which is accessible for everyone 

and not siloed under the control of one or several companies. 

Such information can be, for example, that the product contains 1% of sugar or is vegetarian. 

Additionally, potentially undesirable allergens can be declared, or production procedures 

explained. Producers let these claims be attested by trusted and authorized institutes and 

trusted organizations, which results in a certificate stored under the control of the producer. 

As the Attesters have to perform actual work to issue these certificates and are leveraging 

their trust, they will charge the producer for attesting their claims. 

Trusted and authorized institutes might have the delegated power of the administration to 

issue “official” certificates, or this is their business model and they have a reputation in this 

field. Trusted organizations are organizations that carry the trust of certain communities (e.g. 

vegetarians, people with allergies, etc.), which makes the certificates they issue valuable to 

their respective community. 

  

The certificates can be made available by the producers to various Verifiers. Verifiers can be 

the consumers that want to know certain information about the product, the supermarkets or 

aggregators like cooking websites and recipe apps, or organizations that serve a certain 

community (people with allergies, vegetarians, etc.).  

 

● Claimer is any food (for example, identified by an EAN). For example, the 

manufacturer claims that his product contains 5% sugar, is nut-free and 100% vegan. 

● Attesters are organisations that are trusted by consumers because of their work or 

position. These can be government agencies, but also the German Allergy and Asthma 

Association (DAAB) or the Association of Vegetarians. The attesters check the claims 

and certify them if necessary. 

● Verifiers are both the consumers themselves and aggregators, such as recipe apps 

and cook websites. They provide the consumer with valuable additional information. 



KILT White Paper                        Version 2020-Jan-15 

38 

 

 

In Food-net different Attesters could attest different properties of a food 

The advantages of such an open system would be: 

  

For the Claimer: 

·   Certificates are made digitally available in a decentralized way and can be 

distributed in various ways (e.g. cooking magazines, allergy websites, etc.) which 

generates awareness. 

·   Attributes of the product get certified from independent entities that carry trust in 

a certain community. 

·   All different kind of attributes can get certified: the ingredients, if a product is 

vegetarian or if a product is well tolerated by people with a certain medical 

condition. 

·   The external verification leads to a high credibility. 

·   The certificate is under the control of the certificate holder. 

  

For the Attester: 

·   New business models can be developed by monetizing the trust of a certain 

community. 

·   Gain of reach by aggregators applications and websites. 

·   Their apps can also show attestations of other Attesters, in order to increase the 

benefit for the consumer. 

  

For the Verifier: 

·   Better data because there are a lot of different Attesters. 

·   They can use the trust they build up for becoming Attester themselves. 

 



KILT White Paper                        Version 2020-Jan-15 

39 

 

3.3. Economic Benefits in Trust Structures 

This section examines the potential economic benefits for Aggregators and Attesters within 

complex trust structures, such as a Hierarchy of Trust as well as PCRs.  

Aggregator 

Aggregators may build an application that enables access to information attested on the KILT 

blockchain. An example for this could be a service for the collection and validation of claims 

about certain conditions or ingredients of food products, such as sugar content or allergens. 

In this case, the KILT network would allow to digitise offline trust such as the printing of seals 

on products by writing these Credentials on the KILT Blockchain. Providing trusted source and 

access to such information gives the company behind the product a competitive advantage, 

for which the Aggregator could charge these companies. Aggregators may also buy data from 

users, where the users can select what to share with them, and then sell it in bulk to big 

companies (e.g. health data for medical research, personal preference data for targeted 

advertising, etc.). 

Hierarchy of Trust 

Trust in an Attester may be inherited from another Attester in a hierarchy of trust as it was 

explained in Chapter 2. In a hierarchy of trust, nodes lower down in the hierarchy receive their 

trust from the entities higher up which is a top-down trust delegation approach. A simple case 

is the university degree certificate example in which those attesting degree certificates receive 

the power to do so from the central authority further up. The revenue streams of the different 

parties depend on the design which will differ in each use case. In the university degree 

example, all revenue generated from attestations flow to the root of the tree, whereas the 

Attesters will be paid by the root for performing their work. There might be solutions in which 

there is a revenue share, i.e. where Attesters receive a portion of the attestation fees directly. 

This concept of sharing revenue, however, is most prominent with Private Curated Registries.  

Private Curated Registries (PCRs) 

In PCRs, a highly trusted Curator amplifies the trust level of the rest of the Attesters that are 

listed in the registry. Since an Attester is listed in an environment with other high-quality 

Attesters, they can enhance each other’s trust as well. This is valuable for Attesters since they 
can do more attestation or charge a higher fee which is in turn charged by the Curator of the 

PCR.  

Creating Revenue 

Anyone can start a PCR and become the only Curator of the list. This person defines the policy 

between the PCR members and the Curator. Generally, the Curator defines a revenue share 

between the PCR members and the Curator for participating in the trust of the PCR. Then, the 

Curator invites other participants to become a part of the PCR. Whoever wants to join the PCR 

needs to agree to the policy (e.g. the revenue share model) of the PCR. Instead of a 

proportional revenue share, the Curator may also decide to collect a fixed fee per attestation 

done by an Attester of the PCR. The Curator could also prefer a subscription (e.g. 

monthly/yearly) fee instead of a revenue share and he may also include a joining fee. In 



KILT White Paper                        Version 2020-Jan-15 

40 

 

summary, we can envision many different fee models and all kind of mixtures of these models. 

The level of fees a Curator may charge for a listing depends on the supply and demand to be 

listed on a PCR. This is influenced by the reputation of the PCR, the use case of the PCR, the 

quality of the PCR and other factors as listed above in the “Factors influencing the value of an 
attestation” box.  

Concept of revenue share is highly dependent on the privacy aspects of token transfers in 

KILT. Assuming the Claimer pays attesters on-chain with KILT tokens, then there is a privacy 

issue, since the payment information is public and anyone may learn the owner of the 

Credential related to the attestation (see Chapter 2, “Payment Transactions” in section 2.3.4 
for more details). However, information on attestations is necessary for enforcing the revenue 

share. If not stored on-chain, there must be another reliable information source on the 

attestations so the Attester may not cheat the Curator in reporting less attestations. Apart from 

the highly complex zero-knowledge token transfer concept discussed in section 2.3.4, a simple 

workaround to this problem is the implementation of a monthly fee instead of a revenue share. 

Attestation from a PCR  

A PCR may have received such a high level of 

trust, that verifiers trust attestations made by 

Attesters on the PCR independent of the 

Attester regarded. To leverage such a situation, 

we envision to allow the concept that a Claimer 

may merely submit a request for attestation 

from a PCR independent of the Attester. Such 

a high level of trust accelerates the value of 

being listed in a PCR which in turn influences 

how much the Curator may charge the 

members for being listed on a PCR. In any 

case, the Curator has an interest to maintain a 

high value listing as a decrease in reputation 

heavily impacts the percentage of revenue 

share that can be charged from Claimers. So, 

the Curator, has an incentive to only include 

appropriate Attesters. When a PCR has 

received such a high level of trust that members 

are trusted independent of their own reputation, 

the PCR becomes central to the decision of 

attestation whereas the reputation of the 

concrete Attester becomes irrelevant.  

PCR Example 1: Know Your Customer (KYC) Process 

In the following, an example for a Trust Market that emerges with a PCR is given: Bank A 

creates a PCR for ID attestation services. The bank aims to list which verification services the 

bank trusts for their KYC process. In the start of the creation of the PCR, Bank A has put great 

effort in checking every provider in great detail. Then, Bank A offered the ID attestation 

services that were found reliable the option of becoming listed in exchange for a revenue 

share, i.e. Bank A receives 1% of the revenue for every ID claim the ID attestation service 



KILT White Paper                        Version 2020-Jan-15 

41 

 

attested. Some ID attestation services did not agree on this schema whereas others did 

consent. Eventually the PCR became a list with top ID attestation services however without 

being collectively exhaustive. Other Verifiers may rely on the list to check which ID attestation 

services they trust for their KYC process. So essentially, this list amplifies the trust of listed ID 

attestation providers. An increase in trust ceteris paribus attracts new customers or enables 

the ID provider to charge higher fees for their service (with the risk of losing customers that 

are not willing to pay the price). In addition, the bank could market this PCR to other banks or 

organisations in need for ID services, so this PCR could be established as a brand. 

PCR Example 2: Market for Used Cars 

The following is a real-life example that could be mirrored on the blockchain to enhance the 

value of attestations. In Africa, used cars from western countries are ordered and sold whose 

conditions must be attested by trusted car mechanics. A large market for attesting used cars 

has emerged21 where the attestation of some service companies is valued higher than others. 

An attestation by a high value service company increases the demand for the car which levers 

the price on the secondary market. Such service companies can be mirrored on the blockchain 

as PCRs with their car mechanic employees acting as Attesters and members of the PCR. In 

this case, the revenue share is at 100%, which means that all fees from attestations go directly 

to the curator of the PCR which is the service company. Storing attestations on the blockchain 

ensures that Attesters and Claimers cannot collude on the time of attestation since the hash 

is stored immutably on the blockchain with timestamp. The hashing mechanism makes sure 

that attestations are not faked as only the original document will match the hash on the 

blockchain. This improves the credibility of the attestation for Verifiers which then enhances 

the value of the attestation for Claimers.  

 

  

 
21 “Brief on the PCFV Used Vehicle Working Group” by Kamau, Partnership for Clean Fuels and 
Vehicles (PCFV), last accessed on 2019.02.14 
“Importing Used or Salvage Vehicles from the United States into South Africa” by Richards, Auto 
Auction Mall, last accessed on 2019.02.14 

https://wedocs.unep.org/bitstream/handle/20.500.11822/25233/Brief_PCFVUsedVehicleWorkingGroup.pdf?sequence=2&isAllowed=y
https://www.autoauctionmall.com/learning-center/importing-used-salvage-vehicles-united-states-south-africa/


KILT White Paper                        Version 2020-Jan-15 

42 

 

4.  Claim Standardisation 

The KILT blockchain aims to create a structure and mechanisms where standardisation of 

claim types (CTYPEs) for various applications emerges. The KILT protocol places claim 

standardisation at the centre of the protocol by incentivising Attesters to use standardised 

claims for specific use cases. As a protocol that incentivises the attestation of standardised 

claims, KILT would enable businesses and governments to rely on common standards, which 

are owned by everyone participating in the network and not by a single company. 

4.1. We Need Standardised Claims for Investment Security 

Standardisation is one of the great achievements of modern society, it has many forms and is 

applied across all industries. Standardisation is the process of developing, promoting and 

possibly mandating compatible and interoperable technologies within a given industry. It 

maximises safety, repeatability and quality while fostering interaction beyond walled systems. 

The results of standardisation are pervasive in all aspects of everyday lives, from computers 

to driving cars, or switching on a light. 

Diversity of Standardisation Processes 

Standardisation is a joint effort of multiple types of communities to create a shared base for 

comparing and thus connecting various things. This process can take on different shapes in 

case of the different types of communities22. 

de jure standardisation 

The first type approaches standardisation from an authoritative perspective, where a social 

body has been delegated to define a standard. This process is called a de jure, top-down, or 

committee-based standardisation. The standards are a result of a top to bottom process, with 

organisations or committees such as ISO (International Organization for Standardization), DIN 

(German Institute for Standardization), and IETF (Internet Engineering Task Force) that 

promote standardisation and endorse official standards for given applications. It usually entails 

a centralised decision-making process, and slow to adapt to changes in the real world. Since 

it is a well-defined process, usually the timeframe is known in advance and the outcome is 

predictable. 

de facto standardisation 

Standards can emerge as the result of public acceptance, when a custom or convention 

achieves a dominant position. This process requires that a community is involved and makes 

an impact by making use of, and engage with, or relying upon the standards in question. It is 

an open, market based or bottom-up process, which encompasses decentralised decision 

making. Most of these processes are undefined and the outcomes can be unpredictable. The 

results of these processes are called de facto standards: they are called standards based on 

 
22 Natalie Smolenski, Centripetal Standardization: Top-Down and Bottom-Up Vectors of Value 
Creation, https://medium.com/learning-machine-blog/centripetal-standardization-cc33e23a1acb, last 
accessed on February 25, 2019. 

https://medium.com/learning-machine-blog/centripetal-standardization-cc33e23a1acb


KILT White Paper                        Version 2020-Jan-15 

43 

 

the fact that they are widely used. Prominent examples include the QWERTZ keyboard, MP3 

audio compression format, and the PDF document format. 

Competing Forces in the Standardisation Process 

In real life standardisation processes, there is no hard separation between the two types of 

approaches, but they rather embody two ideal poles of the authoritative communities behind 

the process22. We set out to improve standardisation by building on top of the grassroots open 

source process yet reducing the inherent chaotic decision process and outcome. We envision 

that claims can express virtually any kind of relationship. Or said otherwise, most relationships 

can be modelled by one or many claims. This could translate in the following characteristics: 

● Unpredictable use cases appearing which cannot be encompassed by centralised 

decision making 

● Use cases evolving quickly and the standardised claims that meet their needs having 

to espouse their evolution 

● Need for rapid consensus on the parameters of a claim 

● Openness of the decision process, allowing all stakeholders to participate and voice 

their opinions 

As claims can be about everything, their use cases will live at all levels. For claims about highly 

regulated qualities and/or qualifications, e.g. in transportation engineering and production 

closed and top-to-bottom standardisation processes make sense. But for most other types of 

claims, opening the standardisation process supports the emergence of living claim-

standards. Attesters, verifiers, and any entity interested by the standardisation of a certain 

claim type can participate in the development of the standard. This is essential to a healthy 

claim system, which needs to encompass all use cases and invite all interested parties to the 

standardisation process. The KILT network builds up the supply of valuable CTYPEs so the 

demand may follow. This triggers a positive self-enforcing network effect through which all 

participants experience the benefits of standardised claims. 

Investment Security 

Standardisation can foster investment security, which we envision to be the main driver in our 

case. Verifiers and Attesters have to build software to attest and consume claims. Investing 

work, time and money into this software is only useful if the Verifier can read and understand 

the contents of the attested claim. That means, we have to create an ecosystem, where 

Claimers, Attesters and Verifiers mutually agree on the contents of claim types for certain use 

cases. Expressing qualities and qualifications about an entity is useful only if the language 

expressing this information is understood by all the interested parties.  

Examples of claims where standardisation could provide huge benefits: 

● Identity credentials: KYC claims that are required for the whole banking sector 

● Diplomas and certifications: university degrees conforming to the same structure 

● Access control for IoT devices: car claims it has access to parking 

All these examples imply the existence of a Claimer making a claim, and a Verifier verifying 

that claim through its attestation (as we introduced in Chapter 2). Implicitly this means that 

there are existing processes that allow a Claimer to submit their claim for attestation. On the 

other side, a similar process exists to verify the attestation of a claim. The attestation and 

verification process, to be efficient, is designed to be automatic and require as little ad hoc 



KILT White Paper                        Version 2020-Jan-15 

44 

 

interventions as possible. This implies that the substrate should be well known and agreed 

upon by all partakers in order for the different processes to be built. Put differently, the protocol 

for managing trust relationships needs a content definition language for interoperability 

between the actors. Without this underlying standardisation of claims, attesters might find it 

difficult and possibly unprofitable to build such attestation systems, same can be hypothesised 

for verifiers. A claim protocol without standardisation of the claims is like having HTTP (transfer 

rules) without HTML (agreed schema for content). 

Current approaches for claim standardisation are to use ontology systems23 in order to 

automatize machine readability24 for any type of use cases. While these approaches help 

bridging the gap between systems, they cannot fully provide investment security around claim 

types. In summary, the main problem is not machine readability but finding the right form for 

a given use case on which all participants of trust relationships can easily agree and build 

systems upon. In the following we describe CTYPEs as our proposed solution for the problem, 

which help converging on usable set of claim fields for a given use case. CTYPEs are open 

source by definition, and no one can collect license fees on them from others. 

CTYPEs in the KILT Economy 

Attesters, Verifiers, and any entity having an interest in the standardisation of certain claim 

types can participate in their development. This will translate into a market-driven emergence 

of claim standards. Once in use, these claim standards will evolve with the needs of the 

market, bringing them closer to the necessities of their use case. Overall, this will lessen 

friction and tension on the side of Claimers, Attesters, Verifiers, and industries, that will have 

the opportunity to participate in the standardisation process.  

The industry demands standardisation to improve collaboration, interoperability and efficiency. 

The introduction of CTYPEs in the KILT protocol incentivises the industry to agree on a specific 

standardised form of a claim schema in a given use case. The more a CTYPE is used, the 

more valuable it is as using a CTYPE creates value through the network effect. The most often 

used CTYPEs automatically become a new standard according to the principle “standard by 
adoption”. CTYPEs in the KILT protocol serve as an alternative to ISO and similar 

standardisation organisations. This accelerates the establishment of standards as compared 

to the lengthy processes of central authorities. Interoperability and the establishment of 

meaningful standards is demanded which results in improved key performance indicators 

(KPIs) such as increased efficiency, cost reduction and improved convenience.  

  

 
23 RDF Vocabularies, https://www.w3.org/standards/techs/rdfvocabs#w3c_all, last accessed on 22th 
February 2019. 
Schemas for structured data, https://schema.org/, last accessed on 22th February 2019. 
24 Eduard Hovy, Combining and standardizing large scale, practical ontologies for machine translation 
and other uses, In The First International Conference on Language Resources and Evaluation 
(LREC), pages 535-542, 1998  

https://www.w3.org/standards/techs/rdfvocabs#w3c_all
https://schema.org/


KILT White Paper                        Version 2020-Jan-15 

45 

 

4.2. What is a Claim Type (CTYPE)? 

The KILT protocol places claim standardisation at the centre of the protocol by enabling 

Attesters to use a certain claim schema for creating specific credentials. These standards for 

claims are defined by CTYPEs in the KILT protocol. In this section we explain how CTYPEs 

are generated, located and used within the KILT Protocol, elaborate on the structure and 

capabilities of CTYPEs and then we provide some possible CTYPE examples. 

Basic Concept behind CTYPEs 

As we already mentioned in Chapter 2, CTYPE (a mash of the words claim and type) is a well-

defined structure expressing the properties and rules for certain types of claims. It defines how 

the content of a claim should look like. A CTYPE is similar to a struct in most programming 

languages: it is a generic definition of a data structure. CTYPEs are the means by which 

propositions for claim-standards are made. As anyone can create a CTYPE, there is a very 

low barrier to proposing a new standard for a specific use case.  

Here we list a few fundamental properties about CTYPEs: 

● Claims are always of a given CTYPE (it's their type) 

● Anyone can create a CTYPE using a simple CTYPE builder utility or SDK 

● A CTYPE defines the content and structure of a claim by containing relevant fields 

● Hashes of all CTYPEs are added to (and registered through) the KILT blockchain 

● CTYPEs are published and stored by the creator and/or in an open storage registry 

● Anyone can use a CTYPE to create a new claim 

CTYPE Metadata 

CTYPE metadata contains additional information about the fields of a CTYPE. This will enable 

language translations for CTYPEs, and creators may include other user interface (UI) specific 

info, such as e.g. which type of control to display for a field (checkbox, toggle or radio button, 

etc.). In the end there could be even a complete HTML form built up by metadata. Metadata 

will be created but this part of the CTYPE will not be contained in the hash that identifies the 

CTYPE on the chain.   

Creating and Storing CTYPEs 

Creating and managing CTYPEs are cornerstone functions of the KILT protocol and the 

complete process is depicted on the following diagram. First, a KILT Client (user of a mobile 

wallet or a web-based interface) creates a CTYPE and its metadata (language translations, 

UI specific info, etc.) with the provided builder tool. Next, the Client generates the hash of the 

CTYPE, by hashing the core part (identifier and the structure, without metadata) and requests 

to add (register) this CTYPE to the KILT chain identified by the hash. The miners check the 

sender’s signature and deduct the transaction fee (gas or angel’s share) from the sender’s 

balance and add the hash of the CTYPE to the chain. 

 



KILT White Paper                        Version 2020-Jan-15 

46 

 

 

Creating a CTYPE: dark purple steps are provided as part of the KILT SDK 

Now, the creator may publish her new CTYPE on a CTYPE Registry service. This service can 

be run locally on the client device or somewhere else on the internet. During this process, the 

creator first sends the full CTYPE, with its metadata and her public key to the registry. The 

registry then verifies the CTYPE by locally creating the hash and checking if it is already added 

to the chain (via a proxy blockchain node). If the CTYPE is present on the chain, then it is 

stored and published by the Registry service. From this point forward, the new CTYPE is 

accessible to everyone. Note that the Client, the Registry and the Blockchain communicate 

through a common KILT SDK (described later in Chapter 7), which can be used by other 

organisations to connect to KILT protocol. 

Nested CTYPEs 

Nested CTYPEs will enable one to create nested data structures for credentials. When 

creating new CTYPEs, any CTYPE can be referenced (“nested”) into a more complex CTYPEs 
without duplicating the original CTYPE. Further explanation can be found in Creating a Nested 

CTYPE. 

Services 

There will be services (e.g. discovery interface), which list and promote CTYPEs, so that users 

and software developers can select the fitting CTYPE for their use case. To support the birth 

of an open ecosystem, the CTYPE usage will be free (other than the angels’ share involved 



KILT White Paper                        Version 2020-Jan-15 

47 

 

with the necessary blockchain transactions) and the CTYPE schemas will be publicly available 

and open-source. 

 

Benefits of Using CTYPEs 

Claims can express all kinds of relationships; or the other way around, most relationships can 

be modelled by one or many claims. Because of their wide field of application, different types 

of claims will require different types of standardisation approaches: claims about highly 

regulated qualities and/or qualifications might require closed and top-down standardisation 

processes; for other claims, opening the standardisation process can support the emergence 

of living claim-standards. In the following we describe some context and simple use cases 

where standardised claims are particularly relevant. 

Application Development 

In closed systems (e.g. KYC process in a bank) the Attester and the Verifier belong to the 

same organisation. In these cases, standardisation can be made by definition. As soon as the 

system breaks its boundaries and aims to generate business beyond the traditional model 

(e.g. reusing the KYC Credential issued by Bank A at Bank B), application on the Attester side, 

the Claimer side and the Verifier side need to agree on the content of the claim. 

 

When developers can base the development of their applications on underlying standards 

which are widely accepted and adopted, they gain security for their investments. For example, 

it was safe to invest money into building applications for email because with SMTP25 there 

was an accepted standard for sending emails.  

Usability 

Claimers can use standardised, tested and already accepted structures to express their 

claims, lowering the barrier to make a claim. Attesters will also benefit from knowing 

beforehand what type of claim structure to expect and build attestation pipelines accordingly. 

For Verifiers, standardised claims will facilitate the verification process and increase security 

by reducing the amount of discovery needed when verifying a claim. All put together, 

standardised claims will drive usage. 

Trust 

Claimers will have more trust towards systems using well accepted CTYPEs and will be more 

willing to pay for attestations the use these CTYPEs. Verifiers on the other hand will know in 

advance what structure to expect for a given claim, increasing the trust they have in the claim. 

4.3. Incentivising Standardisation 

In earlier versions of the whitepaper we discussed incentive mechanisms for CTYPE 

standardisation. Research has shown that this approach is far too academic to promise wide 

adoption. We might pick up the standardisation incentives at a later stage.  

 
25 Simple Mail Transfer Protocol, https://tools.ietf.org/html/rfc821, last accessed on February 26th, 
2019. 

https://tools.ietf.org/html/rfc821


KILT White Paper                        Version 2020-Jan-15 

48 

 

5. Bottom-Up Trust: Token-Curated Attester 

(TCA) 
In Chapter 2 we explained top-down trust structures, but trust can be obtained in a “bottom-

up” manner as well. In this case, Attesters acquire trust which is generated by the participants 

(users) of a system. This model resembles social networks like e.g. Facebook and online 

reputation systems like e.g. eBay, Amazon, StackExchange, etc.  

 

However, current internet based bottom-up trust systems are in general hardly reliable. At 

Yelp, for example, everyone can rate a restaurant, but the preferences of a tester and of a 

consumer might not match and there is no structured system of criteria for a rating. Moreover, 

there is no quality assurance in the attestations, namely the reviews are not curated, and 

Attesters are not incentivised to be truthful or reliable. 

 

KILT Protocol aims to solve the issues of the current internet based bottom-up trust 

systems by implementing Token-Curated Attester (TCA) structures, improving on the 

original Token-Curated Registry (TCR) ideas. Various forms of TCRs exist in the minds 

of a few developers and this topic is still currently under research. Therefore, this part 

of the White Paper is also subject to change on the basis of experiences of other 

projects and technical and legal feasibility. Nevertheless, we still wish to outline the 

basic functionalities as we envision them from today’s perspective. 

5.1. Comparing TCRs with Real World Organisations 

Token-Curated Registries26 (TCRs) are known as decentrally-curated lists with intrinsic 

economic incentives that, through the wisdom of the crowd, provide answers to specific 

questions we cannot directly verify. Aleksandr Bulkin elaborated27 in-depth on the 

shortcomings of conventional TCRs and identified three criteria that must be fulfilled in order 

for a TCR to be successful. Due to human nature they can only answer questions if: 

1) There is an objective answer to the particular question. 

2) The answer is publicly observable. 

3) The answer is very cheap to observe. 

The fact that subjective TCRs do not work makes them unusable for most questions they were 

intended for. A simple example is the “List of great restaurants”, which cannot be solved 

sufficiently through a TCR. In this example Curators gather to vote on restaurants, which apply 

to be on the list by stating their name and by paying a deposit. The information if a particular 

restaurant belongs on the list is clearly subjective. And though it is publicly available it is not 

cheap to observe. Voters actually need to go to the restaurant and try their food at least once. 

What will happen is that the highest bet has the best chances to win. On top of that, Curators 

are not necessarily good restaurant testers. Given these conditions the list becomes useless. 

 
26 “Token-Curated Registries 1.0” by Mike Goldin, last accessed on 2019.02.18. 
27 “Token-Curated Registries that don’t work” by Aleksandr Bulkin,last accessed on 2019.10.25. 

https://medium.com/@ilovebagels/token-curated-registries-1-0-61a232f8dac7
https://blog.coinfund.io/curate-this-token-curated-registries-that-dont-work-d76370b77150


KILT White Paper                        Version 2020-Jan-15 

49 

 

 

 

 
Conventional TCR curation process 

In the analogue world we observe a different economy-driven mechanism to solve complex 

subjective problems. Companies employ experts to make decisions. Good decisions have a 

positive effect on the company and thus enable the company to compensate the experts for 

their work. The added value of the actual company is the curation of a list of good experts who 

can maintain or even leverage the positive effect on the company by making the right 

decisions.  

 
The Analogue World Approach 



KILT White Paper                        Version 2020-Jan-15 

50 

 

In this scenario the Curators resemble the management of a company or a brand. They 

increase the value of their organisation by curating a list of experts who work for them. These 

Experts are attracted by incentives, e.g. money or reputation, provided by the curator 

organisation. The better a curator organisation is, the greater incentives it can offer to the 

Experts. 

A restaurant tester (Expert) will choose to work for a high-profile restaurant guide (i.e. curator 

organisation), because they will be able to pay him enough to pay the price for his services 

and the costs connected to them. Furthermore, his personal reputation will increase, working 

for a high-profile company. The Expert will also be careful in his decisions, because if he does 

a bad job, he will be expelled from the list by the Curators sooner or later, damaging his 

reputation and losing his income. 

 

A restaurant (Claimer) claiming that it’s the best spot for business lunch in Berlin would apply 
to or be chosen by the organisation of the Curators proactively. The Experts of that 

organisation would then execute their complex job of testing the restaurant. As they are paid 

by the Curators and risk losing their credibility and responsibility if they make decisions 

damaging the Curators’ reputation, the likelihood of bribed decisions is low. Put differently, the 

Experts are disincentivised to accept bribes (possibly from a bad quality restaurant) over doing 

quality work as that could result in damaging the quality of the curator organisation and hence 

leading to the exclusion of such an Expert from the organisation. The Experts deliver the 

results of their work to the Curators, who would publish it under their company/brand name on 

the list. Good decisions by good Experts should increase the value of the list for the consumers 

and thus the value of the organisation maintained by the Curators should increase. 

 
Decoupling the roles and mechanisms in the TCR  

and adapting them to the Analogue World 

So the basic principle of TCRs which allows one to make decisions through a curation process 

is to be seen very positive and useful, if we decouple the Curation from the actual work of 

making complex decisions. This means that the decision whether to include a restaurant on 

the list should be done by experts in the relevant field and not the Curators. 



KILT White Paper                        Version 2020-Jan-15 

51 

 

5.2. Introduction to the Token-Curated Attester 

We aim to combine the technological benefits of the TCR, which decouples the curation from 

the decision-making part, and implement it in a way that resembles the real world approach 

(curated Experts doing the work) into the KILT Protocol to receive a very powerful tool we call 

Token-Curated Attester (TCA). 

 
TCAs can build up trust with Curators selecting the best experts 

TCA Issues Credentials to Claimers 

The protocol elements for Claimers, Attesters and Verifiers, moreover the Credential storage 

and revocation mechanisms of the blockchain would not differ from the claiming-attestation-

verification process described in Chapter 2. The main process for a TCA as we imagine it at 

this point of time, would be the following. Like in the Top-Down Approach, the Claimer would 

send its attributes and ask the TCA the price for the Attestation. The TCA would automatically 

reply with a price. If the Claimer then should decide he would want to become certified under 

these circumstances, he would reply with a (claimer-)signed version of the Claim, 

accompanied by the necessary funds. 

Experts Do the Inspection Work before Issuing TCA Credentials 

At this stage one or more Experts (depending on the configuration of the respective TCA) 

would pick up the task28 and take all necessary measures to check if the Claimer was 

legitimated to have her claim certified. If this would be the case, the Credential would be signed 

and sent to the Claimer. A hash of the Credential would be stored on the KILT Blockchain on 

 
28The exact way of how a specific Expert is assigned to a specific claiming process is yet to be defined. 
It might be that a business logic outside of the KILT Protocol takes care of it or it might be the case that 
it will be implemented in the KILT blockchain code. 



KILT White Paper                        Version 2020-Jan-15 

52 

 

behalf of the TCA. If the Experts should decide that the Claimer would fail to meet the criteria 

to receive the Credential, the process would end without a Credential issued. The fee paid by 

the Claimer would remain in the TCA and would not be returned in any case, as it would have 

been paid for the check of the criteria that has duly been performed irrespective of the 

outcome. 

 
The inside mechanisms of TCAs would be enabled by KILT Credentials 

Curators Select the Best Experts for their TCA 

An Expert would apply to the TCA by claiming to be a fitting Expert for the TCA (also using 

the basic processes described in Chapter 2). Curators would be incentivised to only accept 

and keep Experts who would really provide value to the TCA. This process may include that 

the Expert would need to hand in all necessary Legitimations (defined by the parameters of 

the TCA) and an application fee (also defined in the parameters). If the Curators would decide 

to accept the Expert for the TCA Y, the Expert would receive a “Belongs to TCA Y” Credential 
for being part of TCA Y and would be referred certain tasks from TCA Y (make decisions on 

whether or not a Credential would be issued in the name of this specific TCA). Experts would 

receive a share of the fees the Claimers pay to the TCA for the Attestation made based on the 

Expert’s work. Experts would be free to leave at any time by simply discarding their “Belongs 
to TCA Y” Credentials (note that they do not get the Claim fee for the initial application back). 

Any Curator of TCA Y could challenge an Expert at any point of time. This would mean that 

the Expert’s “Belongs to TCA Y” Credential would be filed for revocation. If the Curators’ vote 
would decide to withdraw this Credential for her to be an Expert for the TCA, the Expert would 

no longer be working for the TCA. 

5.3. Economic Incentives for Curators and Experts in a TCA 

TCAs would be economic entities that shall 

● have an inherent value, defined by all the KILT tokens locked through them 

● give work to Experts, which get paid for their work by the TCA 

● provide services (Attestations) to the public 

● be able to make a profit. The profit would be the share of the Attestation fees paid by 

Claimers, which would be distributed amongst the Curators and Experts. 



KILT White Paper                        Version 2020-Jan-15 

53 

 

 

In the following list we summarize the incentive mechanisms that, with some reasonable 

assumptions on certain details of the process, would make the TCA structure financially 

sustainable (the numbers of the bullet points refer to the steps on the previous figure). 

 

Incentive mechanisms in TCAs 

Experts would be interested in being listed on a TCA to increase their reputation. Being listed 

on a well-known TCA would improve the Expert’s trust so more Verifiers would believe in his 
attestation which in turn would allow him to charge more for his attestations or would create 

more traction for his work. The economic mechanism behind this increase in trust would be 

two-fold. First, trust could come from the token holders as they curate the Experts  and secure 

the value. In the beginning this could be considered rather a top-down approach but as soon 

as there were enough Curators, the process could be considered bottom-up. Second, the trust 

level of each Expert would amplify the trust level of the rest of the Experts that would be listed 

in the registry. Since an Expert would be listed in an environment with other high-quality 

Experts, they would enhance each other’s trust score. 

5.4. TCA Subtoken Model 

A TCA is planned to be a self-sustainable public entity, hence it shall be enabled and organised 

with a TCA specific (intrinsic) subtoken.  

 

TCAs, just like TCRs, are planned to satisfy the tenets of Mike’s Cryptosystems Manifesto. A 

token would be a necessary element of such a system if the use of any other payment method 

in its place would damage the system’s normal functioning. TCAs would therefore require 
intrinsic subtokens because token holders would have to realize both the upside and downside 

of their good or bad work in order to be motivated to perform their essential curation task. The 

model of TCAs would satisfy the criteria of token-necessity. 

 

https://docs.google.com/document/d/1TcceAsBlAoFLWSQWYyhjmTsZCp0XqRhNdGMb6JbASxc/edit?usp=sharing


KILT White Paper                        Version 2020-Jan-15 

54 

 

A system is self-sustaining if it would continue to function normally in the indefinite absence of 

its creators. In the model for TCAs no entity in the TCA would have special privilege. All TCA 

subtokens of a TCA would be equal and only token weight would determine the weight of 

one’s privilege in a TCA structure. The creator of TCAs could disappear and the closed-loop 

incentive system of the TCAs would be indifferent. Therefore, TCAs would be created to be 

truly decentralized systems and would satisfy self-sustainability. 

  

A system is a public utility if it is permissionless, rent-free, and does something useful. TCAs 

are planned to be permissionless29, and therefore they would be truly decentralized, and only 

token weight determines privilege. They are planned to be rent-free, as tokens would never 

be at stake which are not necessary to incentivize other actors to perform some necessary 

task, or to disincentivize actors from griefing attacks. TCAs are also intended to produce useful 

output, namely Certificates, and therefore to satisfy public utility. 

Following from the above, a TCA shall be organised with a TCA specific subtoken so that 

Curators may enforce their voting rights in the curation process and on the governance 

structure of the TCA. However, KILT tokens shall be used by candidates to become an Expert 

for a TCA and by Curators to initialize revocation of the Expert listed for the TCA. On the other 

hand, subtokens shall entail curation rights where the curation right shall be proportional to 

the relative subtoken weight of entities holding the subtoken. Subtokens could be freely traded 

outside theTCA but would always have a fixed exchange rate to the KILT tokens within the 

TCA. If subtokens were sold back to the TCA, they would be burned. The mechanism is 

explained in more detail in subsection “Bonding curves”.  

For becoming a subtoken holder, the considered entity had to buy into the TCA with KILT 

tokens receiving the respective TCA’s subtokens in return. Subtokens were minted as needed. 
The price of the subtoken would increase when subtokens were bought. More precisely, the 

price would follow a predefined bonding curve30 which will be explained in great detail in the 

next section. The price of the subtoken would reflect the demand for becoming a subtoken 

holder of the TCA. Rational actors would buy exactly the amount of subtokens where the value 

of the list is higher than the price to buy in. The value would be influenced by the quality of the 

list among others. As a result, subtoken holders were incentivised to maintain a popular, high-

quality pool of Experts. Essentially, subtoken holders would keep candidates desirous of being 

listed in the registry by maintaining consumer interest in the registry by keeping the quality of 

listings high.31 Details on the factors that could influence the value of a TCA are explained in 

section “Economic incentive for TCA participants”. 

Bonding Curve 

As already mentioned, the price of a subtoken in a TCA would follow a predefined bonding 

curve. The shape of the bonding curve might be linear or exponential. In any case, if one would 

buy in early, one would receive more subtokens for the same price. In line with this, if one 

 
29 Subject to the Creator of the TCA. See Starting a TCA and Becoming a Curator section for details. 
30 “Tokens 2.0: Curved Token Bonding in Curation Markets” by Simon de la Rouviere, Medium, 2017, 
last accessed on 2019.02.13. 
31 “What is a Token Curated Registry?” by Token Curated Registry, Medium, 2018, last accessed on 
2019.02.13. 

https://medium.com/@simondlr/tokens-2-0-curved-token-bonding-in-curation-markets-1764a2e0bee5
https://medium.com/@tokencuratedregistry/a-simple-overview-of-token-curated-registries-84e2b7b19a06


KILT White Paper                        Version 2020-Jan-15 

55 

 

would buy in later, one would receive less subtokens for the same price. With more subtokens 

in circulation, the cost to buy new subtokens would go up.  

 

Bonding curve with same buy and sell curves30 

 

When subtoken holders would buy into the subtoken with KILT token, the KILT tokens were 

locked in a communal pool. At any point in time, someone could sell back their subtoken into 

the communal pool and get out a certain amount of KILT tokens that was set by the sell curve 

and the current supply. If the amount of subtokens in circulation had increased since the 

respective subtokens were bought, then the token holder would receive a higher amount of 

KILT tokens when selling the subtokens back to the communal pool than when he originally 

bought into the TCA. Importantly, this would be only always true for bonding curves where the 

buy and sell curves were the same as in the picture above. If token holders sold back their 

tokens at a time where less subtokens were in circulation as to when they bought subtokens, 

then the token holders would always make a loss. If everyone would leave the TCA, all KILT 

tokens would be refunded and all subtokens would cease to exist. The TCA would thus grow 

and shrink naturally as the usefulness of the list changes. If the registry was useful and a 

group of subtoken holders judiciously curate it beneficially, there would be more buyers who 

want to be part of the list and more buyers who want to participate in the curation of it (in order 

to receive rewards for doing so).  

 

By default, the price for buying into the TCA would be the same as the selling price, but 

potentially it could also be different. This would create an incentive to keep the subtokens for 

a certain period of time to make a profit when selling subtokens or exiting the TCA. In such a 

case, if token holders immediately sold back their newly bought subtokens, then they would 

make a loss since the selling price is lower than the buy price as precisely defined by the 

bonding curves. Often, the curves could be designed in a way that over time, the gap between 

the ceiling (buying in, blue line) and floor (selling out, red line) would get larger, so buyers 

wouldn’t be immediately in a profit as soon as new participants enter. The gap between in and 

out would serve as a funding opportunity for the project. 



KILT White Paper                        Version 2020-Jan-15 

56 

 

 

Bonding curve with different buy and sell curves30 

In summary, KILT would propose an exponential bonding curve as default to leverage the 

incentives of buying in early. Moreover, KILT would offer different bonding curves and the 

creator would choose one when creating the TCA. The curve could not be changed at any 

later point in time. In addition, we can imagine that the KILT Protocol will enable the creator of 

the TCA to set  the buy and sell curve to be different, so investors would have to wait a certain 

period of time to make their investment profitable. This could make the TCA more stable.  

Subtoken Price Determination 

The KILT Blockchain would provide functions for exchanging KILT tokens in any of the TCA’s 
subtokens and back. All these transactions would take place on the KILT Blockchain. The 

price of a TCA subtoken within the TCA would be determined according to the respective up-

to-date supply along a fixed bonding curve. Whenever KILT tokens would be exchanged into 

TCA subtokens in the TCA, this would create new TCA subtokens, while locking the KILT 

tokens paid for them. This would be the only way to create new TCA subtokens and it would 

determine the supply of the TCA subtokens. The respective up-to-date Token Supply would 

be known to the KILT Blockchain and could be retrieved by anyone at any time. Exchanging 

TCA subtokens back into KILT tokens would always be possible and would be performed by 

a call into the KILT Blockchain. Exchanging TCA subtokens back into KILT would unlock the 

locked KILT tokens and destroy the amount of TCA subtokens changed back. Hence, the 

Supply of the TCA subtoken would decrease. When the last Token of a TCA would be 

exchanged back into KILT Coins, all KILT tokens which were locked would be unlocked again 

and the TCA would cease to exist.  

It is important to note that TCA subtokens could also be traded freely on secondary markets, 

e.g. exchanges or directly between different entities. All these transactions would also take 

place on the KILT Blockchain. 

 

Curators shall be interested in an increase in subtoken price of the TCA which shall be 

determined by the subtoken value. The subtoken value would depend on the quality of the 

Experts, the cash inflow through the Attestations, as well as the future subtoken holders’ wish 
to influence the attested Experts and the general outlook of the TCA. The quality of the TCA 

would depend on the quality of the Experts doing the work behind the Attestations for it. So, 

the subtoken holders would have to make sure that high quality Experts would have an interest 

to work for the TCA and the curation process properly selects only high-quality Experts. In 

order to create a long-term incentive for the Curators and to avoid that they cash out of the 

TCA (when it seems opportune because they could make a profit by selling the TCA 



KILT White Paper                        Version 2020-Jan-15 

57 

 

subtokens), they should receive a revenue stream. This cash inflow would be the share of the 

fees paid by the Claimers for the Attestations issued by the TCA based on the work of the 

Experts in the TCA. Moreover, the Curators would share the fees paid by the Curators during 

a challenge process to exclude an Expert from the TCA. 

 

The subtoken price would be defined by the bonding curve. Namely, it would increase 

according to that curve’s increase when Curators would buy into the TCA and decrease when 
Curators are getting their shares out of the TCA. The decision on whether to buy into a TCA 

would (amongst other reasons outside the logic of the TCA) be defined by the subtoken value: 

whenever the subtoken value would be below the subtoken price, it would be reasonable to 

invest. The same would hold true for the other way around. The aspect that subtoken holders 

would be willing to influence the attested Experts for the TCA and thus to buy into the TCA 

would be included in the definition of the value of the subtoken. Investors would take this into 

account when calculating the subtoken value. So, speculators would buy subtokens as long 

as they expect that there will be more demand for the subtoken in the future.  

Starting a TCA 

Anyone could start a TCA and become the first Curator of the list. The creator of the TCA 

would need to exchange a certain amount of KILT token into the TCA’s own subtokens, 
generating the first supply. At first, the creator would have 100% of the supply of the 

subtokens. Since these subtokens would resemble voting rights among Curators, this first 

Curator would get 100% of the voting rights within the TCA. 

 

The Creator would create the TCA  by specifying his desired initial parameters and then 

registering it on the the KILT Blockchain with these parameters. Since he would set all initial 

parameters, he thus would decide on the governance structure of the TCA. 

 

The initial parameters for a TCA might include: 

● The Credential Type(s) (CTYPEs) this TCA issues 

● Selecting a bonding curve 

● A minimum number of TCA subtokens a Curator must hold 

● A maximum number of TCA subtokens issued to Curators other than himself 

● A maximum supply of the TCA subtoken 

● Legitimations a Curator must bring to be accepted (e.g. valid tax number) 

● Legitimations the TCA itself must acquire before the blockchain runs the code (e.g. 

tax number) 

● Legitimations an Expert must bring 

● Voting frequencies and rules 

● Share distributions between Experts and Curators (from the fees paid by Claimers) 

The Creator would then call a constructor method on the KILT Blockchain with these 

parameters. Depending on the initial parameters and possibly required Legitimations the 

Blockchain would run the TCA, when everything is decided and ready. After the TCA would 

run on the KILT Blockchain, other Curators would be able to invest in the TCA by purchasing 

subtokens and Experts could apply for being on the Expert’s list. As soon an Expert would be 

listed, the TCA could start running and be fully operational, which means it could accept 

claims, conduct checks and issue Credentials. 



KILT White Paper                        Version 2020-Jan-15 

58 

 

Becoming a Curator by Buying into the TCA 

The Creator would be the first Curator of a TCA. Other Curators may join, by exchanging KILT 

tokens into the TCA’s subtokens. As explained above, the exchange rate would be determined 
through a bonding curve, which would be inherent to the TCA. Curators would have voting 

rights on the Experts working for it. The percentage of the TCA’s subtokens they could hold 
(relative to the total supply) would determine their voting power. This might be restricted by 

governance. The Curator would also receive a share of the TCA’s profit, according to the 
percentage of TCA’s subtokens held by him. Depending on the governance, the Curator might 

exchange his TCA’s subtokens back to KILT tokens at any time or after a defined period. The 
exchange rate would be determined by the TCA’s Bonding Curve at the time when the 
transaction takes place. Becoming a Curator could be restricted by the governance of TCA, 

such that certain legitimations might be provided during a KYC process, the number of 

invitations to Curators, their maximum share might be limited or other restrictions that seem 

to be useful for the TCA according for example to the legal and other framework it would be 

created and living in.  

 

After the TCA would have started, anyone might buy subtokens and become a Curator. For 

doing so, one would have to exchange KILT tokens into the TCR’s subtokens. Through this 

exchange, new subtokens were generated and hence the subtoken supply would rise. 

Exchanging subtokens back into KILT tokens would burn subtokens and so the supply would 

shrink. The actual exchange rate of the subtoken to KILT would depend on the current supply 

of the subtoken and would be calculated according to the bonding curve assigned to the TCA. 

As the price of the subtoken would rise according to a monotonically increasing bonding curve, 

late Curators would pay more for the same weight in voting.  

Governance Mechanisms 

There would be the option to include a governance mechanism so parameters could be 

adapted through Curator vote when the respective TCA would already be live. At this stage in 

the design phase, it is unclear whether or how this will be implemented. The conceptual choice 

to design one fixed governance scheme as a standard or one with more flexibility in its 

mechanisms is still to be made before implementing the options for the TCAs. 

 

5.5. Regulation-Friendly TCA Ecosystem built on the KILT 

Protocol 

In general, the KILT protocol shall define the framework for TCAs where the exact properties 

of the TCA shall be left to be defined on the application layer according to the respective use 

case. So eventually, the TCA creator would decide on the parameters of the TCA and would 

check how the technical implementation and the legal system of his jurisdiction fit together 

best. However, the KILT Protocol shall include a proposed general standard to streamline and 

potentially automate this process.  

 

We believe that numerous business models could be represented with TCAs and that 

thousands of TCAs could eventually run on the KILT Blockchain in parallel in the future. TCAs 



KILT White Paper                        Version 2020-Jan-15 

59 

 

could enable virtual structures that act like companies, running on a blockchain, which could 

be completely transparent for investors and service providers while being regulated and taxed 

by governments like traditional companies. Thus we aim to build a TCA Factory on top of KILT, 

which allows anyone to set up a TCA with a simple request into the KILT Blockchain. Unlike 

Smart Contracts, TCAs would not be programmable but configurable. A certain set of 

parameters would be available to TCA-Creators for configuring the TCA according to the 

particular task. 

 

There is a trade-off on the flexibility in designing the TCA individually: the more flexible the 

TCA would be programmed, the more complex the protocol and the more attack vectors would 

emerge. On the other side, flexibility would allow a better adaptation to user needs which could 

improve user satisfaction.  

 

 
TCA Factory Middleware built on top of the KILT Protocol 

A TCA could be configured through numerous parameters. TCA Creators could create TCAs 

fitting their particular needs through these parameters. Regulators could use the TCA concept 

to allow commercial organisations, running completely on a blockchain within their jurisdiction 

and under their rule. They could, for example, define that a TCA and all its Curators and 

Experts should have an official tax number to be accepted in their jurisdiction. This could be 

enforced through the definition of necessary Legitimations, which would also be a property of 

the KILT Protocol. If such a system was ever accepted by a jurisdiction, this would give 

investors in TCAs the possibility to invest in a legally approved entity while enabling founders 

to rapidly set up a commercial structure without a street address and a bank account, which 

functions in a well-defined and transparent way. 

Such features could also be mirroring the legal and tax framework in which such a TCA exists, 

so that authorities could ex ante approve TCAs of a certain configuration and provide 

interfaces to them for tax payment or other legal necessities. These predefined and approved 

TCA templates could then be used by Creators to configure their own TCAs according to the 

approval of the local authorities and they would benefit not only from the legal security but also 

from the infrastructure provided by the tax and other authorities.  

 



KILT White Paper                        Version 2020-Jan-15 

60 

 

 
Registering TCA with Authorities 

 

 

 

 

 

  



KILT White Paper                        Version 2020-Jan-15 

61 

 

6. KILT Token Economy 

As explained in Chapter 3, the KILT network shall enable the establishment of an economy 

where trust can be delegated in return for rewards. This trust market economy shall emerge 

naturally. In this chapter we discuss the economic aspects of the network from the perspective 

of the KILT token. It is important to note that the design mechanisms discussed here express 

our current view on this topic, however, this mechanism is subject to change based on ongoing 

research until the time the network goes live and beyond.  

6.1. KILT Token 

The KILT token is required to perform certain actions within the KILT Network. The issuance 

of the initial tranches of KILT token is done by Botlabs GmbH and then the protocol/network 

would allow the creation of (block-)rewards and would distribute it following predefined 

mechanisms. There is a chance for the KILT token32 to be listed on exchanges after the launch 

of the KILT main-net which would facilitate its tradebility against other cryptocurrencies and 

fiat currencies.  

Overview of the KILT Token Functions 

The KILT token could be used for providing safety of the KILT Blockchain and having access 

to write to the secure block space for trusted data. Utility of the KILT coin can be broken down 

to the following possible use cases: 

● Paying angel’s share (gas) when writing an attestation on the KILT Blockchain 

● Paying an Attestation fee33 

● Register a new CTYPE on the blockchain 

● Creating a Hierarchy of Trust (including the Private Curated Registry) and managing 

the delegations in the structure 

● Creating and setting up a Token Curated Attester (TCA, explained in Chapter 5) 

● Expert applying to a TCA 

● Paying for an Attestation issued by a TCA 

● Direct transactions in KILT tokens between users of the network 

● Distributing the block reward to Validators 

● Contributing to network security (staking/nominating Validators in the proof-of-stake 

consensus mechanism) 

KILT Token Emission  

During the whole life of the KILT network, one billion KILT tokens are planned to be created 

which implies a finite token supply. 40% percent of the token supply would be pre-mined and 

distributed before the launch of the network. The remaining 60% of the available token supply 

 
32 As we already discussed in Payment Transactions, the KILT Coin will be the currency of the KILT 
network after the official launch of the main-net and this currency shall potentially be listed on 
exchanges. 
33 The Claimer may also pay the attestation fee in fiat or other cryptocurrencies depending on the 
payment framework set by the Attester.  



KILT White Paper                        Version 2020-Jan-15 

62 

 

would be minted over time and would be rewarded to agents that conduct valuable work for 

the network. The tokens for the block reward would be minted as needed, i.e. created out of 

thin air according to predetermined rules. The block reward function would be defined in such 

a way that more tokens are released in the first years of the network life than later to incentivise 

adoption. The block distribution is currently designed in a way that after 50 years, all one billion 

KILT tokens would be released and there would be no more block reward after that. By that 

point in time, we envision KILT to be a well established true ledger for trust relationships, which 

might be linked to multiple external systems. 

Reward Pool 

600 million KILT tokens  (60% of the total supply) would be emitted by the KILT network over 

time to Validators (and maybe to Attesters). According to the current design, the emission of 

the rewards would follow a bounded exponential curve according to the following formula: 

 𝑀 =  1 − 0,5𝑡/𝐻 

where: 

M = Cumulative ratio of tokens released via block rewards 

t = Time (years) 

H = Half-life of the block reward in years 

 

After the first H years, 50% of the total amount of tokens for block reward would be emitted. 

Currently we consider that a half-life of 10 years is most reasonable. This would give a balance 

between sustained network growth during the initial critical period and still incentivising 

contribution to the network in later years. According to the proposed function and parameters, 

the KILT Protocol would emit 50% of the block rewards in the first 10 years. Then, every 10 

years, the remaining tokens to be minted would be halved.  

 
The distribution of tokens in the 50th year would follow a different distribution curve as the 

remaining tokens would be released linearly, such that all 1 billion tokens shall eventually be 

distributed by the end of the 50th year of KILT’s life cycle. The total number of tokens that 

would already have been emissioned in the first 49 years can be easily calculated as (1 −0,549/10) ∗  600.000.000 =  579.904.248. In turn the remaining number of tokens to be released 

in year 50 would be  600.000.000 − 579.904.248 = 20.095.752 that would be issued linearly 

distributed throughout the year.  



KILT White Paper                        Version 2020-Jan-15 

63 

 

 

It has been argued that in general fiat currencies dissolve after about 50 years (due to the 

decline of power of the state backing the currency).34 Inspired by these insights, we are 

proposing the block reward to diminish over 50 years since we consider it realistic to plan the 

token economy for such a timeframe. In the current design, most tokens are emissioned in the 

early years of the protocol to incentivise bootstrapping the system. Then, the focus is set on 

keeping the blockchain running which is primarily rewarded with transaction fees that are 

distributed to Validators. In addition, the high reward in the beginning incentivises Validators 

to secure their stake early and start validating new blocks. 

Controlling Inflation in Proof of Stake Systems 

Latest research on the token economy of Proof of Stake (PoS) blockchain systems shows that 

controlling the inflation of tokens could be required to defend against cannibalization attacks.35 

It is argued that decentralised finance solutions such as on-chain lending may disrupt proof of 

stake consensus depleting the total stake with economic incentives from outside the system 

to make a 51% attack feasible. In general this piece of research concludes that, if a PoS block 

reward is decreasing over time, then its long-run equilibrium will be for almost all assets to be 

lent, not staked.  

6.2. Designing Demand and Incentives for the KILT Token 

The KILT block reward mechanisms are currently designed in a way that it should keep the 

KILT Protocol running and aligned with the right incentives to use the network.  

Block Rewards for Security and Consensus   

This section describes the proposed distribution of the 60% of KILT tokens as block reward 

on a high-level. These token rewards would be meant to incentivise providing security and 

consensus about the state of the blockchain through mining that would be performed by 

Validators. 

We are currently proposing one minute as the block time. This means that every minute a 

block would be written, and rewards would be distributed. The eventual block time would 

depend highly on technical feasibility which could be only shorter than one minute in case the 

underlying blockchain would be operating fast enough. Here, the KILT network would depend 

on the technical evolution of the Substrate blockchain framework on which KILT would be built 

upon.  The rewards for security and consensus would be directly distributed to Validators. 

Only the Validator who would mine the respective block would receive the block reward which 

would depend on his stake and on probability.  

 
34 Chris Mack: Is This Time Different for the Dollar?, 
https://www.financialsense.com/contributors/chris-mack/is-this-time-different-for-the-dollar,  
last accessed on 25th March, 2019. 
35 Haseeb Qureshi: How DeFi cannibalizes PoS security, https://medium.com/dragonfly-
research/how-defi-cannibalizes-pos-security-84b146f00697,  
last accessed on 18th December, 2019. 

https://www.financialsense.com/contributors/chris-mack/is-this-time-different-for-the-dollar
https://medium.com/dragonfly-research/how-defi-cannibalizes-pos-security-84b146f00697
https://medium.com/dragonfly-research/how-defi-cannibalizes-pos-security-84b146f00697


KILT White Paper                        Version 2020-Jan-15 

64 

 

Token Lock-up due to Staking in Proof-of-Stake 

From today’s perspective, the KILT Blockchain is set out as a proof-of-stake based blockchain 

network. This means that the validators would need to stake KILT tokens to be able to take 

part in the validation process. This requirement for staking would increase the scarcity of KILT 

tokens.  

Utility of KILT tokens 

Validators would receive block rewards for providing security and ensuring the correctness of 

state changes on the network through consensus. Essentially, Validators would keep the 

network alive. They would validate two aspects: formal correctness of attestations/revocations 

and sound authorisation of the one performing the attestation/revocation. Considering the 

validation of an attestation, the Validators would first check whether the structure of the 

CTYPE fits predetermined criteria. Then, they would check whether the Attester would have 

the permissions to write an attestation/revocation, i.e. the Validator would check the rights of 

the Attester and whether he would have delegated rights through a hierarchy of trust or 

through a PCR. Essentially, Validators would provide the supply of secure and correct block 

space demanded by those that write the hash of credentials on the blockchain. 

When writing the hash of credentials on the blockchain, Attesters would have to pay the 

angel’s share (gas or transaction fee) in KILT tokens. In the current design, this cost would 

then be distributed only to Validators. It would be added to the block reward designated to the 

Validators and then distributed in the same way as the block reward. In this design, Attesters 

would not receive any of the angel’s share except when they become Validators themselves. 
The angel’s share distribution would be particularly important considering the time when there 
would be no more KILT tokens emissioned (in 50 years). 

Users of the KILT Protocol would be able to use KILT tokens to join TCAs as curators. This 

would mean that they need to buy-in to the TCA with KILT Coins which then would be 

exchanged into TCA subtokens. 

6.3. Open Topics 

In a later version of the white paper, we might go into possible attack vectors in the KILT token 

economy. Also, the mechanism on token appreciation especially in regard to TCAs might be 

fleshed out in more detail. In addition to the current incentive mechanism, we envision another 

one that might include the opportunity to invest in CTYPEs one considers as promising. 

Moreover, we can also imagine an incentivization mechanism for making the best CTYPEs 

available to the public. Also, the angel’s share (gas) price for writing attestation on-chain shall 

be defined as well as the pricing mechanisms. Finally, if the KILT Blockchain ever becomes a 

parachain in the Polkadot network, that might change the security model for our token 

economy for instance since the Validation function may be delegated to Relay-Chain 

Validators to share the state and security between parachains. 

  



KILT White Paper                        Version 2020-Jan-15 

65 

 

7. System Architecture 
In this chapter we show the planned relationship between the various components of the core 

system and their dependencies to third party developments. This section addresses any 

developer who wants to integrate the KILT Protocol and blockchain developers, who wish to 

contribute to the KILT Community by building general purpose services or by improving the 

KILT Protocol itself. 

7.1. KILT Overview 

The KILT ecosystem will be composed of different interacting parts (shown below) which will 

work together to provide the functionalities we described in Chapters 2-4. KILT will be basically 

composed of client applications (e.g. Credential Wallet App), centralised as well as 

decentralised services (e.g. CTYPE registry), and the KILT Blockchain.  

 

The applications and services interact with the blockchain by either implementing the KILT 

protocol or integrating the KILT SDK, which already implements the KILT protocol and is 

provided by us. Our KILT SDK implements basic functionalities like storing an Attestation or 

adding a CTYPE on the blockchain, it handles Identities, CTYPEs, Claims, Attestations and 

Verifications, and Complex Trust Structures. It also includes helper functions to work with 

cryptographic libraries and KILT specific messages. Here we describe the protocol in detail 

(always noting important interdependence with the SDK and the services) and in the next 

chapter we describe how the services fit into the KILT ecosystem. 

 

 
KILT System Overview 

  



KILT White Paper                        Version 2020-Jan-15 

66 

 

7.2. KILT Protocol 

The KILT Protocol describes three main layers:  

● The data formats and how to handle different types of data, such as Identities, 

CTYPEs, Claims, Attestations and Verifications, is the core of the KILT Protocol. 

● Rules, guidelines and workflows, as well as a messaging protocol supporting these 

processes and exchange data formats. 

● The KILT Blockchain nodes use Parity Substrate as the underlying blockchain 

technology stack (see details later in KILT Blockchain section). To support KILT, the 

nodes need to implement different modules in their runtime. 

Identity Management 

An Identity contains following properties: 

● signing keypair: currently uses the ed25519 public-key signature system, but it will 

be replaced by sr25519 in the next version of Substrate 

● address: the public address is generated by encoding the signing public key, using 

the ss58 algorithm. 

● encryption keypair: uses x25519-xsalsa20-poly1305 for encrypting messages 

between participants of the system 

A client software can easily create a keypair using libraries implementing the ed25519 

signature suite, however, this process is greatly simplified by employing the Identity module 

of the KILT SDK. Currently, all public parts of KILT identities can be registered into the Central 

Contact Registry in order to participate in sample workflows, but this is subject to the demo 

application only. In the future we envision all kind of different scenarios for contact 

management (see next chapter). 

KILT Decentralised Identifier (DID) 

Although it is not mandatory for using the KILT protocol, users can optionally create a DID and 

anchor it to the KILT blockchain. KILT currently supports creating DIDs simply by using the 

address of the identity as the method specific identifier, for example:  

 did:kilt:5GZ1ri8q2h7hXJHe9CnJVMAvGdRi3rbrrxfYBNHLwzH55daF 

KILT DIDs are resolved to a DID entry stored on the KILT Blockchain. This entry includes a 

signing key, an encryption key, and optionally a link to the corresponding DID Document. The 

corresponding DID Document referenced by the link in the DID entry can be stored anywhere 

(user cloud agent, central service, etc.). For demo purposes it may also be stored in the 

Central Contact Registry. 

 

The DID Document is conform to the current DID specification and it currently contains: 

● signing key 

● encryption key 

● service endpoint pointing to our messaging service. 

http://ed25519.cr.yp.to/
https://substrate.dev/docs/en/overview/ss58-address-format
http://nacl.cr.yp.to/valid.html
http://ed25519.cr.yp.to/
https://w3c-ccg.github.io/did-spec/
https://w3c-ccg.github.io/did-spec/


KILT White Paper                        Version 2020-Jan-15 

67 

 

We are implementing a fully featured DID stack into KILT. This involves publishing our DID 

specification as a kilt DID method specification and implementing the KILT DID resolution 

as a driver for the Universal Resolver. Moreover, we are also planning to support peer DIDs. 

Two ways of using DIDs with KILT 

Using DIDs in KILT can be done in two different ways: 

● Static: For a given DID identifier, a DID Document is created and stored at a given 

location such as a regular server. A DID entry that also specifies the link to the DID 

Document is stored on-chain. In this case, it is recommended to protect the DID 

Document from unwanted tampering. One way to do so is to store a signature of the 

hashed DID Document together with the DID Document on the above-mentioned 

storage location. This signature can be verified later on.  

● Dynamic: The DID entry is stored on-chain, without specifying a link to the DID 

Document. The DID Document is regenerated on-the-fly using the SDK’s DID 
methods such as createDefaultDidDocument. 

Node Implementation of DID Registration 

KILT Blockchain nodes need to implement a DID module, with an add function. 

This function takes the following parameters: 

● owner: public ss58 address of the caller of the method  

● signKey: the ed25519 public signing key of the owner 

● boxKey: the x25519-xsalsa20-poly1305 public encryption key of the owner 

● docRef: Optional u8 byte vector representing the reference (URL) to the DID  

               document 

 

The blockchain node verifies the transaction signature corresponding to the owner and 

inserts it to the blockchain storage by using a map (done by the substrate framework):    
  owner => (signKey, boxKey, docRef) 

As DID supports CRUD (Create, Read, Update, Delete) operations, a get_dids method 

reads a DID for an account address, the add function may also be used to update a DID and 

a remove function that takes the owner as a single parameter removes the DID from the 

map, so any later read operation call does not return the data of a removed DID. 

Creating, Registering and Publishing a CTYPE 

As we already introduced and discussed in Chapter 2 & 4, a Claim type (CTYPE) defines a 

schema, with which Claims can be created. CTYPEs can be created by a client software, then 

registered on the KILT Blockchain and finally published in a CTYPE registry service. 

Building a CTYPE 

CTYPEs can be built locally by client software most easily by implementing the CTYPE creator 

modules of the KILT SDK. The CTYPE Claim schema is built using JSON Schema, with 

following meta-schema. Every CTYPE needs to validate against this meta-schema: 

{ 

   "$schema": "http://json-schema.org/draft-07/schema#", 

https://uniresolver.io/
https://dhh1128.github.io/peer-did-method-spec/index.html
https://substrate.dev/docs/en/overview/ss58-address-format
http://ed25519.cr.yp.to/
http://nacl.cr.yp.to/valid.html
https://json-schema.org/


KILT White Paper                        Version 2020-Jan-15 

68 

 

   "$id": "http://kilt-protocol.org/draft-01/ctype#", 

   "type": "object", 

   "properties": { 

      "$id": { 

         "type": "string" 

      }, 

      "$schema": { 

         "type": "string", 

         "format": "uri" 

      }, 

      "type": { 

         "type": "string", 

         "enum": [ 

            "object" 

         ] 

      }, 

      "properties": { 

         "type": "object", 

         "patternProperties": { 

            "^.*$": { 

               "type": "object", 

               "properties": { 

                  "type": { 

                     "type": "string", 

                     "enum": [ 

                        "string", 

                        "integer", 

                        "number", 

                        "boolean", 

                        "array" 

                     ] 

                  } 

               } 

            } 

         } 

      } 

   } 

} 

 

 

Register a CTYPE 

After creating a CTYPE locally, the creator needs to register the CTYPE to the KILT 

Blockchain so that all users can check if a Claim is really conforming to a CTYPE. The locally 

created CTYPE is first normalised by removing all whitespace outside of strings and is hashed 

by using the blake2b hashing algorithm (encoded as hex string, starting with 0x). This process 

is shown in the next example: 

 

Example of Locally Created CTYPE (plain JSON): 
{ 

   "$id": "DriversLicense", 

https://blake2.net/


KILT White Paper                        Version 2020-Jan-15 

69 

 

   "$schema": "http://kilt-protocol.org/draft-01/ctype#", 

   "properties": { 

      "name": { 

         "type": "string" 

      }, 

      "age": { 

         "type": "number" 

      } 

   }, 

   "type": "object" 

} 

Normalised: 
{"$id":"DriversLicense","$schema":"http://kilt-protocol.org/draft-

01/ctype#","properties":{"name":{"type":"string"},"age":{"type":"number"}},

"type":"object"} 

Hashed (hex-encoded): 
0x9ec5ed4f752ad52ce5cf4bbe82f23389eb6dece3b95c13b3cdacf93a0ef92cff 

This hash is signed by the creator of the CTYPE and registered (added) to the blockchain. 

Node Implementation of CTYPE Registration 

KILT Blockchain nodes need to implement a CTYPE module, with an add function. 

This function takes following parameters: 

● creator: public ss58 address of the caller of the method  

● CTYPEHash: CTYPE hash as a blake2b string 

The blockchain node verifies the transaction signature corresponding to the creator and 

inserts it to the blockchain storage by using a map (done by the substrate framework):    

   CTYPEHash => creator 

Creating a Nested CTYPE 

When creating a CTYPE, one can layer (“nest”) CTYPEs within one another, thereby creating 
more complex structures through the use of the keyword $ref (which is acting as a reference 

pointer from JSON Schema). The $ref is a URI, and KILT expects the format for the URI-

reference KILT:ctype:0x9ec5ed4f752ad52..., mentioned in the “Register a CTYPE” 
section. This hash is a makeup of the schema produced and will be unique to the specific 

CTYPE. The CTYPEs nested in the schemas are known as subschemas which link via the $id 

keyword.  

 
"schema": { 
   "$id": "KILT:ctype::0x9ec5ed4f752ad52....", <- Unique Reference  

  Identifier (URI) 

   "$schema": "http://kilt-protocol.org/draft-01/ctype#", 
   "type": "object", 
   "properties": { 
     "full_name": { "type": "string" }, 
     "passport_identifer": { "type": "string" }, 
     "street_address": { "type": "string" }, 
     "city": { "type": "string" }, 
     "state": { "type": "string" } 
   } 

https://substrate.dev/docs/en/overview/ss58-address-format
https://blake2.net/
https://json-schema.org/understanding-json-schema/structuring.html?highlight=ref
https://json-schema.org/
https://json-schema.org/understanding-json-schema/structuring.html#using-id-with-ref


KILT White Paper                        Version 2020-Jan-15 

70 

 

 }, 

 "owner": "....", 
 "hash": "0x9ec5ed4f752ad52..." <- The URI could be a combination of  

   the CType or Claim Hash 

} 

 

The metadata part of a CTYPE is planned to support readability in different languages. As 

specific CTYPEs could have multiple languages, that would create unique reference identifiers 

duplicating structures. For this reason the metadata was intentionally left out from the nested 

CTYPE structure. 

Reference Pointer ($ref) 

The $ref, in essence, has all the properties and types of the specific CTYPEs. These are 

not combined to make a new Object. 

● CTYPE schemas can be recursive, to implement different CTYPEs, and these can 

perform respectively recursive. E.g. Nested CTYPEs can have further subschemas.  

● CTYPE schema URIs are for identifying schemas and validators should not expect to 

be able to download the schemas from the URIs for the subschemas. 

● CTYPEs $id needs to be unique identifiers for more than one schema.  

Note that, to validate a CTYPE, which has subschemas in it, the user needs to have copies of 

all the involved CTYPEs (e.g. via a CTYPE registry, etc.). 

Validating 

KILT uses a library called Ajv to test and validate schemas. An additional step that is 

mentioned is checking against our meta-schema, which is CTypeModel, as seen below. That 

allows us to refine the data types. 

const newCType = "KILT:ctype:CTYPEHash" <--- CType Object 
const cTypePassport = "KILT:ctype:PASSPORTHash" <--- CType Object 
const cTypeKYC = "KILT:ctype:KYCHash" <--- CType Object 

// We can pass an array of Objects to the CTYPE creator 
const validate = ajv.addSchema([cTypePassport, cTypeKYC])  
   .compile(newCType) <--- Compiles for validation 
const data = { 
   cType: "kilt:ctype:PASSPORT Hash", 
   contents: {  
         "full_name": "Archer Macdonald", 
         "passport_identifer": "34jd83jd", 
         ... 
} 

validate(data) // Returns true 

addSchema must add all relevant CTYPE schemas to the ajv instance during its compile 

phase, then validate checks the data and returns true if the data is valid. This method 

does not compile schemas into a new object, but stores them within the cache of the instance 

and it validates against the data along with the meta-schema. It also prevents unnecessary 

compilation of schemas that contain other schemas. 

oneOf Combination  

A feature within JSON Schema provides another keyword oneOf, which KILT expects to use. 

It combines a multitude of schemas, though the given data must be valid against exactly one 

https://github.com/epoberezkin/ajv
https://json-schema.org/
https://json-schema.org/understanding-json-schema/reference/combining.html#oneof


KILT White Paper                        Version 2020-Jan-15 

71 

 

of the given subschemas, allowing a value to be validated against multiple criteria at the same 

time. Giving more choices to the CTYPE creation process and enabling more complex data 

structures. A simple example is shown as follows: 

   "schema": { 
     "$id": "KILT:ctype:CTYPE Hash V2", 
     "$schema": "http://json-schema.org/draft-07/schema#", 
     "type": "object", 
     "properties": { 
       "Identifier": { 
         "oneOf": [ 
           { 
             "type": "object", 
             "$ref": "KILT:ctype:ID Hash" 
           }, 
           { 
             "type": "object", 
             "$ref": "KILT:ctype:PASSPORT Hash" 
           }, 
           { 
             "type": "object", 
             "properties": { 
               "full_name": { "type": "string" }, 
               "passport_identifer": { "type": "string" }, 
               "street_address": { "type": "string" }, 
               "city": { "type": "string" }, 
               "Country": { "type": "string" } 
             } 
           } 
         ], 
       }, 

 "Drivers_license": { 
       "type": "object", 
       "$ref": "KILT:ctype:Drivers_license Hash" 
 } 

     }, 
   } 

 

Publishing a CTYPE on the Registry Service 

If the CTYPE hash is present on the chain, then it can be stored and published by a Registry 

service. Although we currently use a simple central CTYPE Registry, we imagine various 

methods for storing and publishing CTYPEs (e.g. using IPFS). While the registry service is not 

a core part of the protocol, the KILT SDK provides methods to publish and store CTYPEs. 



KILT White Paper                        Version 2020-Jan-15 

72 

 

Flow (left) and sequence 

(top) diagrams of creating 

a CTYPE and publishing it 

to the blockchain 

 

 

  



KILT White Paper                        Version 2020-Jan-15 

73 

 

Claim Structure 

Claims are created locally on the Claimers' client device by choosing a CTYPE. As we have 

shown previously, the CTYPE scheme (cType) defines the structure of the data the Claimer 

has to fill in (contents) when creating the claim. When a Claimer creates a new claim for a 

CTYPE, then the Claim will be associated with the Claimer’s identity (owner). 

General Claim Structure 

Claim { 

 cType: <Hash of the CTYPE>, 

 contents: <Instance of the CTYPE scheme> 

owner: <Address of the owner identity> 

} 

Example Claim of the DriversLicense CTYPE 

{ 

 "cType": "0x39ffc33202410721743e19082986e650b4e847b85bea7eab77...", 

 "contents": { 

  "name": "Andreas", 

  "age": 38 

 }, 

 "owner": "5CJUL8B3xSaPmAM5vzj427HtrJRBiySezN1aKsJ5Q7aSVde3" 

} 

 

The contents of the claim are verified against the CTYPE scheme when the claim is created. 

A JSON Schema based validator is used to do this validation. 

 

Claims are not stored on the blockchain. Claimers decide on their own where they want to 

store their claims. Most likely this will be a local store on the Claimers device (e.g. local storage 

in a browser). 

Request for Attestation 

To get an Attestation from an Attester, the Claimer first has to build a “Request for Attestation” 
object. 

RequestForAttestation { 

  claim: <Claim> 

  claimerSignature: string - The signature of the claimer 

  claimHashTree: object - All claim properties hashed with nonces 

  ctypeHash: object - The ctype hash, hashed again with a nonce 

  legitimations: AttestedClaim[] - Array of AttestedClaim objects of the  

                 Attester which the Claimer requests from her to include 

                 into the attestation as her legitimations 

  delegationId: object (optional) - The id of the DelegationNode of the  

                Attester, which should be used in the attestation 

  claimHash: object - Root hash of the whole claim, built from the hashes  

       of the claim tree, the ctype hash, the legitimations  

       hashes and the delegationId 

  quote: object - quote object (see later) 



KILT White Paper                        Version 2020-Jan-15 

74 

 

  quoteHash: object - Root hash of the whole qute, built from the hashes  

       of the quote 

} 

 

This object contains the claim (and its hashes) and legitimations/delegationId of the 

Attester and is signed by the Claimer, to make it tamper proof (claimerSignature). By 

including legitimations/delegation into the object, the Claimer can force the Attester to attest 

an object under his conditions, or put differently, he can control, under which conditions the 

Attester has to attest. More details how the Complex Trust Structures are implemented will be 

described in a later section. The object also includes the claim hash, which is generated from 

a claimHashTree (also included in the object). The RequestForAttestation object, 

together with claimHashTree, also supports hiding of claim data during a Credential 

Presentation, which is described in a later section. 

The Hash-Tree 

The Hash-Tree includes a nonce and a hash for every property of the Claim. 

ClaimHashTree { 
  property1: { 

nonce: string - unique identifier (Version 4 UUID) 

hash: string - hex representation of the resulting hash of the  

       property and the nonce combined 

  } 

  property2: {...} 

  ... 

  propertyX: {...} 

} 

The value of every property of the contents of a claim is hashed, by generating a nonce (e.g. 

by generating a UUID) and applying our hash algorithm (blake2b) on a string concatenation 

of the nonce and the JSON-converted and normalised value. The result is saved in hex form.  

For example, we have the property:  
age: 30 

We generate a nonce: 
 "f942d230-b1a4-428f-9566-358137a0836c" 

We convert the value of the property to JSON and normalise it: 
 "30" 

We concatenate the nonce and the value: 
 "f942d230-b1a4-428f-9566-358137a0836c30" 

and apply our hashing algorithm: 

"0x4b0fabbf5ac728e1841ef1884e47cac83718b259025f371932141bfba4004928" 

The resulting claimHashTree might look like this: 
{ 

  "age": { 

    "nonce": "f942d230-b1a4-428f-9566-358137a0836c", 

    "hash": "0x4b0fabbf5ac728e1841ef1884e47cac 

             83718b259025f371932141bfba4004928" 

  }, 

https://en.wikipedia.org/wiki/Universally_unique_identifier


KILT White Paper                        Version 2020-Jan-15 

75 

 

  "name": { 

    "nonce": "de58f813-0d28-48a0-bffb-6665db6ba727", 

    "hash": "0x26bc08454332540fa94fc0b88745be9 

             fef1f500395fbb1b88afcc231ced29e88" 

  } 

} 

The ctypeHash also gets re-hashed by applying the same method. Let’s say we have 
following ctypeHash: 

"0x5a9d939af9fb5423e3e283f16996438da635de8dc152b13d3a67f01e3d6b0fc0" 

We generate a nonce: 
 "522ac374-4661-4561-9c16-4ff960369198" 

The ctypeHash is already in JSON compatible and normalised form, so we concatenate it 

with the nonce: 
"522ac374-4661-4561-9c16-

4ff9603691980x5a9d939af9fb5423e3e283f16996438da635de8dc152b13d3a67f01e3d6b0

fc0" 

and apply our hashing algorithm:  
"0x286f752a68ff3e6652e8936a97c904a1e8f262e6ddfe080ed25fbba9c43a1a2b" 

Result looks as follows: 
{ 

  "nonce": "522ac374-4661-4561-9c16-4ff960369198", 

  "hash": "0x286f752a68ff3e6652e8936a97c904a 

           1e8f262e6ddfe080ed25fbba9c43a1a2b" 

} 

The Claim Hash 

The claimHash is what makes an attested claim unique and immutable, as it is generated 

from the hashed claim properties, legitimations, delegations and the ctypeHash. To generate 

the claimHash, all these values are collected, converted to byte arrays, concatenated and 

finally hashed (with blake2b). The resulting claimHash is then stored with the request for 

attestation and used as the identifier for the attestation itself.  

 

Changing (or tampering with) an attested claim will always result in a different claim hash, so 

in such cases a verification will always fail. 

Quote 

The Quote allows Attesters to express their requirements and prerequisites to become part of 

the service contract between the Claimer and the Attester based on which the Attestation is 

made and paid for. The Attester provides their public address to carry out the Attestation of 

the Claim (which has the CTYPE cTypeHash) specified within the Quote structure. A Quote 

has versioning for different specs and offering a version for Attesters and Claimers to 

reference such as changes within the Quote from anything to cost and 

termsAndConditions these can directly affect the version of the Quote.   

 
IQuote { 

 attesterAddress: PublicIdentity['address'] 



KILT White Paper                        Version 2020-Jan-15 

76 

 

 cTypeHash: IClaim['cTypeHash'] 

 cost: ICostBreakdown 

 currency: string 

 quoteTimeframe: string 

 termsAndConditions: string 

 version: string 

} 

 

The cost is broken-down to tax, net and gross. 

 
ICostBreakdown { 

  tax: number 

  net: number 

  gross: number 

} 

Terms 

Terms are built as an object by an Attester after requesting a quote. 

 
ITerms { 

  claim: string 

  legitimations: object[] 

  delegationId?: DelegationNode['id'] 

  quote?: IQuote 

  prerequisiteClaims?: Array<IClaim['cTypeHash']> 

} 

 

The Quote is used within the terms to show the Claimer the terms. Additionally, it enables us 

to remove all the prerequisites and to allow them to validate the data without exposing the 

data of the claim. Once the Claimer has agreed to the Terms, they will sign and send it to the 

Attester.  

Attestation and Revocation 

Creating a Credential from a Claim through Attestation 

To get a claim attested, the Claimer has to send her claim for attestation to the Attester with a 

REQUEST_ATTESTATION_FOR_CLAIM message (detailed later). The Claimer initiates a 

connection with an Attester, hashes and signs her claim and sends it to the Attester. This 

signature proves that the Claimer himself created these contents and prevents creation of 

claims about an arbitrary identity. The Attester verifies the provided information against the 

CTYPE scheme, checks the signature and builds an Attestation object. To build the 

Attestation, the Attester signs the claim hash with his identity, such that everybody can check 

the ownership of the Attestation. The Attestation is then stored on the blockchain. 

Scheme of the Attestation 

Attestation { 

  claimHash: string 

  signature: string 

  revoked: boolean 

} 



KILT White Paper                        Version 2020-Jan-15 

77 

 

Once the Attestation is built, the Attester submits the Attestation wrapped in an 

AttestedClaim object, which we also call the Credential. This attested claim or Credential, 

which the Claimer can now store locally and give to Verifiers, also contains the original request 

for attestation. 

Scheme of the Credential 

AttestedClaim { 

  attestation: Attestation 

  requestForAttestation: RequestForAttestation 

} 

Writing an Attestation to the Blockchain 

In KILT protocol, the Attestation object can be written to the blockchain. While the Credentials 

could be used and verified without writing the corresponding attestations to the chain (for the 

conceptual details on this issue see Chapter 2), in our current testnet, all Attestations are 

written to the blockchain by default. This is done to provide an immutable decentralised source 

of the status (valid or revoked) for the Credential.  

 

Storing an attestation must be performed with the attester’s identity (owner). The Attestation 

entity is stored in a map on the blockchain, with the claimHash as the key and a tuple of 

CTYPE hash, owner address and revoked status as the value (see Node Implementation of 

Attestation and Revocation section for more details). Once stored on-chain, everybody who 

has access to the KILT protocol can verify a given attestation, while also being able to trust 

the time of the attestation (based on the creation of the block it is included in).  

Revocation 

To revoke an Attestation, the Attestation has to be stored on chain. Once the revocation is 

invoked, it will set the revoked flag to true and update the Attestation entity on chain. 

A revoked attestation entity can still be queried from the chain, but a verification check will fail. 

Attestation as a service 

We imagine that Attesters will be service providers in the KILT ecosystem. This would be 

greatly supported if the Attesters could make clear, which CTYPEs they attest. Although this 

functionality is not currently part of the protocol, as a first approach, we propose that this 

function could be part of the Contact service (explained in the next chapter). In the future, this 

might be integrated in the protocol itself. 

 

Additionally, an Attester should be able to state that he runs an attestation service and to 

describe the communication channels through which he runs his attestation service (server IP 

address, port number, etc.). According to our current plans, we will add this information to our 

contact exchange service (see next Chapter for a description of services in the KILT 

ecosystem). However, this information could be also included in the Attesters DID Document. 

This proposed solution could also be used for Verifiers who run a verification service. The 

exact details of such an implementation will be designed and described at a later stage of the 

development of the KILT network. 



KILT White Paper                        Version 2020-Jan-15 

78 

 

Node Implementation of Attestation and Revocation 

The KILT Blockchain node runtime defines an Attestation module exposing functions to 

● add an attestation (add) 

● revoke an attestation (revoke) 

● lookup an attestation (lookup) 

● lookup attestations for a delegation (used later in Complex Trust Structures) 

on chain.  

Add 

The add function takes following parameters: 

● attester: The caller of the method, i.e. public address (ss58) of the Attester  

● claimHash: The Claim hash as blake2b string used as the key of the entry 

● CTYPEHash: The blake2b hash of CTYPE used when creating the Claim 

● delegationId: Optional reference to a delegation which this attestation is based 

on        (see Complex Trust Structures for detail)  

The node verifies the transaction signature and insert it to the state, if the provided attester 

didn’t already attest the provided claimHash. The attestation is stored by using a map:  

claimHash => (CTYPEHash, attester, delegationId (optional), Revoked) 

Revoke 

The revoke function takes the claimHash (which is the key to lookup an attestation) as 

argument. After looking up the attestation and checking invoker permissions, the revoked 

flag is set to true and the updated attestation is stored on chain. 

Lookup 

The attestation lookup is performed with the claimHash, serving as the key to the 

attestation store. The function get_attestation(claimHash) is exposed to the outside 

clients and services on the blockchain for this purpose. 

 

Similarly, as with the simple lookup, to query all attestations created by a certain delegate, 

the runtime defines the function get_delegated_attestations(DelegationNodeId) 

that is exposed to the outside. 

 

https://substrate.dev/docs/en/overview/ss58-address-format
https://blake2.net/
https://blake2.net/


KILT White Paper                        Version 2020-Jan-15 

79 

 

Attesting a Claim and sending back the resulting Credential to the Claimer 

 



KILT White Paper                        Version 2020-Jan-15 

80 

 

Verifying a Credential 

To verify a Claim, the Verifier requests Attested Claims for a certain CTYPE from the Claimer 

by sending an REQUEST_CLAIM_FOR_CTYPE message to the Claimer. The Claimer selects 

the locally stored attested claims and sends them in a SUBMIT_CLAIM_FOR_CTYPE 

message back to the Verifier. 

 

Once the attested claim(s) have been sent, on the Verifier side each attested claim is verified. 

Assuming the Verifier trusts at least one of the Attesters, the process entails: 

● re-hashing and comparing submitted data 

● checking hashes of a presentation 

● checking if the attestation matches to the request 

● verifying that the attestation is stored on chain and non-revoked. 

Credential Presentation 

For each selected attested claim, the Claimer can select parts of the Claim data she would 

like to present to (or hide from) the Verifier. This is the process where the Claimer creates a 

presentation of her attested claim.  

 

For every part of an attested claim (e.g. claim fields/data, CTYPE hash, legitimations, 

delegation) a nonce is created, and the contents of the specific part together with its nonce is 

hashed using the blake2b hashing algorithm. The nonce is created to prevent predictable 

hashes for a given data (like true/false fields). All hashes are combined together and are 

hashed to build the claimHash. For a partial Credential presentation, the nonce and data of 

one or more parts are simply deleted from the attested claim, but the hash of the respective 

fields are left intact. When building the proof over a partial Credential, all remaining parts and 

their nonces are checked against their hashes and all hashes (containing also the hashes of 

deleted parts) are checked if they build up the claimHash. The claim hash can then be 

checked to be signed correctly by the claim owner and attester. This proves that the revealed 

parts of the partial claim were originally claimed by the claim owner and attested by the 

attester. 

Complex Trust Structures 

Attesting a Claim with Legitimations 

The Claimer can request the Attester to include legitimations in the Attestation. To do so, the 

Claimer starts the attestation workflow by requesting the Attesters legitimations for a given 

CTYPE (REQUEST_TERMS). Once the Attester gives her legitimations to the Claimer 

(SUBMIT_TERMS), she can include them in the request for attestation.  

RequestForAttestation { 

  ... 

  legitimations: AttestedClaim[] - Array of AttestedClaim objects requested 

                 by the Claimer of the Attester to include as legitimations 

  ... 

} 

 

https://blake2.net/


KILT White Paper                        Version 2020-Jan-15 

81 

 

Indeed, a legitimation is a Credential and thus represented by the AttestedClaim type. This 

means, we can handle legitimations as any attested claim, verify it, create presentations of it 

and so on. Since an AttestedClaim also contains the original request for attestation, which 

in turn contains legitimations, we can have an endless nested structure of legitimations. As 

legitimations are also just credentials presented to the Claimer (and later the Verifier of the 

claim) they could also have hidden fields, i.e. contain only parts of the claim data. As any 

attested claim, legitimations may also contain further legitimations. 

As legitimations also may contain data a Claimer does not want to present to every Verifier, it 

is optional to include the data of the AttestedClaim itself, unless the claim’s hash remains in 
the legitimation object to build up the root hash for verification. 

 

When a Claimer includes legitimations in a RequestForAttestation, those legitimations 

are also included in the generated claimHash. Legitimations are not checked by the Validator 

Nodes at all at the time of attestation. The chain offers read functions for all data that is stored 

(e.g. get a delegation by id). There is no way to add read functions that also implement a 

checking algorithm, there are only transactions and storage read functions. 

Hierarchy of Trust 

As described in Chapter 2 the concept of delegations make it possible to implement a 

Hierarchy of Trust for making attestations. On the lowest level, a delegation structure is always 

a tree with a root delegation that is referencing a certain CTYPE.  

 

Since we’re dealing with a tree structure, the nodes are implemented in a composite hierarchy. 
So, there is a DelegationBaseNode type from which both the DelegationRootNode and 

default DelegationNode inherit. 

DelegationBaseNode { 

  id: string 

  account: string 

  revoked: boolean 

  getRoot(): DelegationRootNode 

  getParent(): DelegationBaseNode 

  getChildren(): DelegationNode[] 

  ... 

  verify(): boolean 

} 

 

The root delegation node has the following structure: 

DelegationRootNode extends DelegationBaseNode { 

  cTypeHash: string 

} 

 

The default delegation node has the following structure: 

DelegationNode extends DelegationBaseNode { 

  rootId: string 

  parentId: string (optional) 

  permissions: Permission[] 

  generateHash(): string 

} 



KILT White Paper                        Version 2020-Jan-15 

82 

 

On-chain there is a Delegations module exposing store, revoke and lookup functions. To store 

the root delegation, a client-generated Version 4 UUID (id) and the CTYPE hash are passed 

as arguments. The id serves as the lookup to the root node. Each node is also associated 

with an account (owner). For root delegations only the owner is allowed to create first level 

delegations.  

Delegation Node Permissions 

To create a delegate node within a tree, a member needs to be the owner of a delegation with 

the permission to delegate. Each delegation can be configured to have a certain permission 

(attest and/or delegate).  A delegation is always associated with a root and may be a child of 

a delegation that has the permission to delegate or may not be a child of any delegation, which 

means that it’s the top level under the root. 

Inviting to Delegate 

Inviting someone as child delegate the inviter sends a REQUEST_ACCEPT_DELEGATION 

message to the invitee. For that the inviter creates a volatile delegation object, selects the 

permissions (attest/delegate) and the parent delegation, hashes and signs it, and sends it to 

the invitee. The invitee then can verify and accept the delegation invitation, sign the hash and 

send back the delegation object to the inviter with SUBMIT_ACCEPT_DELEGATION. After that 

the inviter verifies the signature and stores the delegation with the delegate’s signature on 
chain. Finally the inviter sends back a message to inform the invitee 

(INFORM_ACCEPT_DELEGATION) that the delegation has been created and she can import it 

to her client application to attest and/or delegate. 

Attest as Delegate 

A Claimer can request her claim to be attested with a certain delegation. To do so, she sends 

a REQUEST_LEGITIMATION to the Attester. The Attester proves he is allowed to attest the 

requested CTYPE by sending back his delegation. The Claimer then verifies the sent 

delegation, includes it in the REQUEST_ATTESTATION_FOR_CLAIM, hashes everything and 

sends it to the Attester. 

 

Now, after the claim has been checked by the Attester, he creates the attestation with the 

delegation he included. To ensure immutability, we use the claimHash (which also includes 

the delegationId) as the lookup key to the attestation.  

 

The Verifier can check, if an attested claim has been attested by a delegate he trusts. The 

tree nature of KILT delegations makes it possible to resolve a delegation path up to a trusted 

delegate.  

 

Note that on a higher level an Attester can have multiple delegations (from different higher-

level Attesters) within the same Hierarchy of Trust, thus forming a directed acyclic graph 

(DAG). However, this will be translated to the lower implementation level by creating multiple 

DelegationNode entries for the Attester with different parentId fields representing multiple 

delegation trees from the Attesters perspective. 



KILT White Paper                        Version 2020-Jan-15 

83 

 

Revoking Delegations 

In KILT any delegation can be revoked. After revoking a delegation, the delegate is no longer 

able to attest or delegate using that delegation. Delegates with a delegate permission can 

revoke their own or direct child delegations. Revoking a delegation also revokes all child 

delegations. Attestations that were created with a delegation that has been revoked later are 

still valid. 

 

It is also possible to revoke all attestations that were created with a certain delegation. 

Node Implementation of the Hierarchy of Trust 

The KILT Blockchain node runtime defines a Delegation module exposing functions to 

● create a root (create_root) 

● add a delegation (add_delegation) 

● revoke a delegation (revoke_delegation) 

● revoke a whole hierarchy (revoke_root) 

● lookup a root (lookup_root) 

● lookup a delegation (lookup_delegation) 

● lookup children of a delegation (lookup_children) 

on chain.  

Create root 

The create_root function takes the following parameters: 

● owner: The caller of the method, i.e. public address (ss58) of the owner of the  

             trust hierarchy 

● rootId: A V4 UUID identifying the trust hierarchy 

● CTYPEHash: The blake2b hash of the CTYPE the trust hierarchy is associated with 

The node verifies the transaction signature and insert it to the state. The root is stored by using 

a map:  

rootId => (CTYPEHash, owner, revoked) 

Add delegation 

The add_delegation function takes the following parameters: 

● owner: The caller of the method, i.e. public address (ss58) of the delegator 

● delegationId: A V4 UUID identifying this delegation 

● rootId: A V4 UUID identifying the associated trust hierarchy 

● parentId: Optional, a V4 UUID identifying the parent delegation this delegation is  

                   based on 

● CTYPEHash: The blake2b hash of CTYPE used when creating the Claim 

● delegate: The public address (ss58) of the delegate (ID receiving the delegation) 

● permissions: The permission bit set (having 0001 for attesting permission and  

                            0010 for delegation permission) 

https://substrate.dev/docs/en/overview/ss58-address-format
https://blake2.net/
https://substrate.dev/docs/en/overview/ss58-address-format
https://blake2.net/
https://substrate.dev/docs/en/overview/ss58-address-format


KILT White Paper                        Version 2020-Jan-15 

84 

 

● delegateSignature: ed25519 based signature by the delegate based on the  

                                       delegationId, rootId, parentId and permissions 

The node verifies the transaction signature and the delegate signature as well as all other data 

to be valid and the delegator to be permitted and then inserts it to the state. The delegation is 

stored by using a map:  

delegationId => (rootId, parentId, delegate, permissions, revoked) 

Additionally, if the delegation has a parent delegation, the information about the children of its 

parent is updated in the following map that relates parents to their children: 

 delegationId => Vector(delegationId) 

Revoke 

The revoke function takes the claimHash (which is the key to lookup an attestation) as 

argument. After looking up the attestation and checking invoker permissions, the revoked 

flag is set to true and the updated attestation is stored on chain. 

Lookup 

The attestation lookup is performed with the claimHash, serving as the key to the 

attestation store. The function get_attestation(claimHash) is exposed to the outside 

clients and services on the blockchain for this purpose. 

 

Similarly, as with the simple lookup, to query all attestations created by a certain delegate, 

the runtime defines the function get_delegated_attestations(DelegationNodeId) 

that is exposed to the outside. 

Communication and Messaging 

All messages are encrypted with the encryption keys of the involved identities. An 

EncryptedMessage is composed of the encrypted MessageBody and surrounding data. 

 
MessageBody { 

type: string - a message type, which describes what the  

               content will look like 

content: object - an object containing data according to the  

                  message type 

} 

 
EncryptedMessage { 

  message: string - encrypted  MessageBody 

  nonce: string - nonce used to encrypt MessageBody 

  createdAt: number - unix timestamp in milliseconds 

  hash: string -  blake2b hash of message + nonce + createdAt 

  signature: string - hash signed with senders ed25519 signing key 

  receiverAddress: string - ss58 address of receiver 

  senderAddress: string - ss58 address of sender 

} 

http://ed25519.cr.yp.to/
https://blake2.net/
http://ed25519.cr.yp.to/
https://substrate.dev/docs/en/overview/ss58-address-format
https://substrate.dev/docs/en/overview/ss58-address-format


KILT White Paper                        Version 2020-Jan-15 

85 

 

Timestamp Proofs 

Every time someone sends data about an identity, he or she has to sign the message together 

with the challenge number (a nonce and the timestamp) to prove access to the corresponding 

private key. The reason for adding a timestamp is to prevent the replay attack of messages 

containing the same data. If one gets access to a message that he could send later on to fraud 

the original sender, the receiver could check and prove with the timestamp that the message 

has been created earlier or especially before someone requested something that this message 

is the answer to. As the malicious actor is not possessing the private signature key and the 

timestamp is part of the signature, he is not able to change the timestamp and still having a 

valid signature on the message. 

Message Types 

We have defined specific message formats on the protocol level for core mechanisms in KILT 

(e.g. claiming-attestation process, legitimation, Credential presentation etc.). In the following 

we show simple examples of these messages. 

REQUEST_ATTESTATION_FOR_CLAIM 

With this message the Claimer can request an attestation from an Attester. 
{ 

  "type": "request-attestation-for-claim", 

  "content": { 

    "claim": { 

      "cType": "0xd3b3...4cbf", 

      "contents": { 

        "name": "Claimer", 

        "age": "29" 

      }, 

      "owner": "5GZ1ri8q2h7hXJHe9CnJVMAvGdRi3rbrrxfYBNHLwzH55daF" 

    }, 

    "ctypeHash": { 

      "nonce": "b7983808-af5d-48cb-b19b-be91796ba810", 

      "hash": "0x1d11...3643" 

    }, 

    "legitimations": <Array of AttestedClaim objects>, 

    "claimHashTree": { 

      "name": { 

        "nonce": "f6ef7ce4-f2e7-4db5-9642-457aff510327", 

        "hash": "0x42bf...69a3" 

      }, 

      "age": { 

        "nonce": "46deed19-d1f5-4267-adb1-20f051498040", 

        "hash": "0x04f2...1b28" 

      } 

    }, 

    "hash": "0x69ab...09c2", 

    "claimerSignature": "0x18c6...1605" 

  } 

} 



KILT White Paper                        Version 2020-Jan-15 

86 

 

SUBMIT_ATTESTATION_FOR_CLAIM 

Through this message format the Attester can reply to the Claimer, sending back the issued 

Credential, i.e. the attested claim. 

 
{ 

  "type": "submit-attestation-for-claim", 

  "content": { 

    "request": { 

      "claim": { 

        "cType": "0xd3b3...4cbf", 

        "contents": { 

          "name": "Claimer", 

          "age": "29" 

        }, 

        "owner": "5GZ1ri8q2h7hXJHe9CnJVMAvGdRi3rbrrxfYBNHLwzH55daF" 

      }, 

      "ctypeHash": { 

        "nonce": "b7983808-af5d-48cb-b19b-be91796ba810", 

        "hash": "0x1d11...3643" 

      }, 

      "legitimations": <Array of AttestedClaim objects>, 

      "claimHashTree": { 

        "name": { 

          "nonce": "f6ef7ce4-f2e7-4db5-9642-457aff510327", 

          "hash": "0x42bf...669a3" 

        }, 

        "age": { 

          "nonce": "46deed19-d1f5-4267-adb1-20f051498040", 

          "hash": "0x04f2...1b28" 

        } 

      }, 

      "hash": "0x69ab...09c2", 

      "claimerSignature": "0x18c6...1605" 

    }, 

    "attestation": { 

"cTypeHash": "0xd3b3...4cbf" 

      "owner": "5H7xkU126e8MnjYymUa9rHKiMKjEWndJMRTiHju3saacHM8X", 

      "claimHash": "0x69ab...09c2", 

"delegationId": "0x31366336633336332d373962322d" 

      "revoked": false 

    } 

  } 

} 

REQUEST_CLAIM_FOR_CTYPE 

This is the message where the Verifier can specify the CTYPE of a Credential it accepts.  
{ 

  "content": "0xd3b3...4cbf", // hash of the specific CTYPE  

  "type": "request-claims-for-ctype"                           } 



KILT White Paper                        Version 2020-Jan-15 

87 

 

SUBMIT_CLAIM_FOR_CTYPE 

This is the message format for presenting (sending) a Credential to a Verifier. 
{ 

  "content": [ 

    { 

      "request": { 

        "claim": { 

          "cType": "0xd3b3...4cbf", 

          "contents": { 

            "name": "Claimer" 

          }, 

          "owner": "5GZ1ri8q2h7hXJHe9CnJVMAvGdRi3rbrrxfYBNHLwzH55daF" 

        }, 

        "ctypeHash": { 

          "nonce": "b7983808-af5d-48cb-b19b-be91796ba810", 

          "hash": "0x1d11...3643" 

        }, 

        "legitimations": <Array of AttestedClaim objects>, 

        "claimHashTree": { 

          "name": { 

            "nonce": "f6ef7ce4-f2e7-4db5-9642-457aff510327", 

            "hash": "0x42bf...69a3" 

          }, 

          "age": { 

            "hash": "0x04f2...1b28" 

          } 

        }, 

        "hash": "0x69ab...09c2", 

        "claimerSignature": "0x18c6...1605" 

      }, 

      "attestation": { 

  "cTypeHash": "0xd3b3...4cbf" 

        "owner": "5H7xkU126e8MnjYymUa9rHKiMKjEWndJMRTiHju3saacHM8X", 

        "claimHash": "0x69ab...09c2", 

  "delegationId": "0x31366336633336332d373962322d" 

        "revoked": false 

      } 

    } 

  ], 

  "type": "submit-claims-for-ctype" 

} 

  



KILT White Paper                        Version 2020-Jan-15 

88 

 

REQUEST_TERMS 

Message format used for a Claimer to request legitimations from an Attester. 
{ 

 "messageId":"cca66900-a51d-4697-9334-c1be80 ...", 

 "receivedAt":1554468621207, 

 "body":{ 

   "content":{ 

     "cType":"0x4a3981552a77782a1cb4ee924b26 ...", 

     "contents":{ 

       "name":"Alice", 

       "Age":30 

     }, 

     "owner":"5CjCBuxqDRknHPRiSVXvNoDsz867N4 ..." 

   }, 

   "type":"request-legitimations" 

 }, 

 "createdAt":1554468621156, 

 "receiverAddress":"5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

 "senderAddress":"5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

} 

SUBMIT_TERMS 

Message format to send legitimations and delegations to a Claimer. 
{ 

 "messageId": "bc074220-afb7-4bdc-8654-3748d4 ...", 

 "receivedAt": 1554469210277, 

 "body": { 

   "content": { 

     "claim": { 

       "cType": "0x4a3981552a77782a1cb4ee924b26 ...", 

       "contents": { 

         "name": "Alice", 

         "age": 30 

       }, 

       "owner": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ..." 

     }, 

     "legitimations": [ 

       { 

         "request": { 

           "claim": { 

             "cType": "0x4a3981552a77782a1cb4ee924b26 ...", 

             "contents": { 

               "myProp": 42 

             }, 

             "owner": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ..." 

           }, 

           "ctypeHash": { 

             "nonce": "8f16eb14-bf52-4a5c-ba1c-ce9f47 ...", 

             "hash": "0xe1673ab99383ab8f124d1bd3526e ..." 

           }, 

           "legitimations": [], 

           "delegationId": "0x31366336633336332d373962322d ...", 



KILT White Paper                        Version 2020-Jan-15 

89 

 

           "claimHashTree": { 

             "name": { 

               "hash": "0x8af2647c8fce665931608edbbdfd ..." 

             }, 

             "age": { 

               "nonce": "eb43980c-52fa-4f1f-9c72-71414c ...", 

               "hash": "0xa69b7851fd5ac9729c93e986ca0b ..." 

             } 

           }, 

           "hash": "0x744a722328071bea6a8f4b45c8ce ...", 

           "claimerSignature": "0x1a6afb333ebeef8499e1b5f02ee3 ..." 

         }, 

         "attestation": { 

           "owner": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

           "claimHash": "0x744a722328071bea6a8f4b45c8ce ...", 

           "cTypeHash": "0x4a3981552a77782a1cb4ee924b26 ...", 

           "delegationId": "0x31366336633336332d373962322d ...", 

           "revoked": false 

         } 

       } 

     ], 

     "delegationId": "0x31366336633336332d373962322d ..." 

   }, 

   "type": "submit-legitimations" 

 }, 

 "createdAt": 1554469210194, 

 "receiverAddress": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

 "senderAddress": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ..." 

} 

  



KILT White Paper                        Version 2020-Jan-15 

90 

 

REQUEST_ACCEPT_DELEGATION 

Message to invite someone as delegate in a delegation tree. 
{ 

 "messageId": "3260c795-b07f-468c-ba3e-b11f46 ...", 

 "receivedAt": 1554470253615, 

 "body": { 

   "content": { 

     "delegationData": { 

       "account": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

       "id": "0x36373566643930302d633530332d ...", 

       "parentId": "0x31366336633336332d373962322d ...", 

       "permissions": [ 

         1, 

         2 

       ] 

     }, 

     "metaData": { 

       "alias": "my delegation" 

     }, 

     "signatures": { 

       "inviter": "0xb517d62504b1937c1cb37a224e95 ..." 

     } 

   }, 

   "type": "request-accept-delegation" 

 }, 

 "createdAt": 1554470253571, 

 "receiverAddress": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

 "senderAddress": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ..." 

} 

  



KILT White Paper                        Version 2020-Jan-15 

91 

 

SUBMIT_ACCEPT_DELEGATION 

Message sent to accept the invitation to be a delegate in a delegation tree. 
{ 

 "messageId": "7317afa0-8abf-49b7-83d0-448b71 ...", 

 "receivedAt": 1554472048612, 

 "body": { 

   "content": { 

     "delegationData": { 

       "account": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

       "id": "0x36373566643930302d633530332d ...", 

       "parentId": "0x31366336633336332d373962322d ...", 

       "permissions": [ 

         1, 

         2 

       ] 

     }, 

     "signatures": { 

       "inviter": "0xb517d62504b1937c1cb37a224e95 ...", 

       "invitee": "0xfc429958cfb6aea183949f4f5ccf ..." 

     } 

   }, 

   "type": "submit-accept-delegation" 

 }, 

 "createdAt": 1554472048557, 

 "receiverAddress": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

 "senderAddress": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ..." 

} 

INFORM_ACCEPT_DELEGATION 

Message to inform the invitee (now delegate) that a delegation has been created for her. 
{ 

 "messageId": "e6c13b38-6230-4137-8281-6ac3cc ...", 

 "receivedAt": 1554472161811, 

 "body": { 

   "content": "0x36373566643930302d633530332d ...", 

   "type": "inform-create-delegation" 

 }, 

 "createdAt": 1554472161579, 

 "receiverAddress": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ...", 

 "senderAddress": "5CjCBuxqDRknHPRiSVXvNoDsz867N4 ..." 

} 

 

 

  



KILT White Paper                        Version 2020-Jan-15 

92 

 

KILT Blockchain 

The KILT Blockchain is the heart and soul behind KILT protocol. It provides the immutable 

transaction ledger for the various processes in the network. 

Building on the Parity Substrate Blockchain Framework 

During our first whiteboard phase, we were thinking about developing the KILT protocol on 

Ethereum smart-contracts, but we realised that we would have less freedom of setting 

transaction costs, while incurring a high level of overhead. Instead, we started our 

development on Parity Substrate, a general blockchain framework, and built up the KILT 

Blockchain from scratch based on its module library.  

 

Building our blockchain on Parity Substrate has multiple advantages. Substrate has a very 

good fundamental architecture and codebase created by blockchain experts. Substrate 

framework is developed in Rust, a memory efficient and fast compiled system programming 

language, which provides a secure environment with virtually no runtime errors. Moreover, the 

node runtime is also compiled to WebAssembly, so older version native nodes can always run 

the latest version node runtime in a WebAssembly virtual machine to bypass the problem of a 

blockchain fork. Importantly, there is a vibrant developer community and rich documentation. 

 

Our implementation is based on the substrate-node-template library (skeleton template for 

quickly building a substrate based blockchain), which is linked to the main Substrate 

codebase. 

Remote Procedure Calls 

The Ethereum ecosystem highly leverages JSON-RPC where one can efficiently call methods 

and parameters directly on the blockchain node. Based on good experiences, developers 

decided to use it in Substrate as well. The Polkadot API helps with communicating with the 

JSON-RPC endpoint, and the clients and services never have to talk directly with the endpoint. 

Blocktime 

The blocktime is currently set to 5 seconds, but this setting is subject to change based on 

further research. We will consider what is affected by this parameter, and in the long term it 

will be fine-tuned to a setting that provides the best performance and user experience for the 

participants of the KILT network. 

Extrinsics and Block Storage 

In Substrate, the blockchain transactions are abstracted away and are generalised as 

extrinsics in the system. They are called extrinsics since they can represent any piece of 

information that is regarded as input from “the outside world” (i.e. from users of the network) 
to the blockchain logic. The blockchain transactions in KILT are implemented through these 

general extrinsics, that are signed by the originator of the transaction. We use this framework 

to write the KILT Protocol specific data entries on the Substrate based KILT Blockchain: DID, 

CTYPE hash, Attestation and Delegation. The processing of each of these entry types is 

handled by our custom Substrate runtime node modules. 

 

https://www.parity.io/substrate/
https://substrate.dev/docs/en/runtime/architecture-of-a-runtime#__docusaurus
https://github.com/paritytech/substrate
https://substrate.dev/
https://github.com/rstormsf/substrate-node-template
https://www.jsonrpc.org/specification
https://polkadot.js.org/api/
https://substrate.dev/docs/en/conceptual/node/extrinsics#__docusaurus


KILT White Paper                        Version 2020-Jan-15 

93 

 

Under the current consensus algorithm, authority validator nodes (whose addresses are listed 

in the genesis block) can create new blocks. These nodes validate incoming transactions, put 

them into the pool, and include them in a new block. While creating the block, the node 

executes the transactions and stores the resulting state changes in its local storage. Note that 

the size of the entry depends on the number of arguments the transaction, (i.e. the respective 

extrinsic method) has. The size of the block is hence dynamic and will depend on the number 

and type of transactions included in the new block. The valid new blocks are propagated 

through the network and other nodes execute these blocks to update their local state (storage). 

Consensus Algorithm 

Since we are the only authority provider in the testnet phase, we use the simple Aura 

consensus mechanism. At a later stage, we most likely will change to GRANDPA, which 

supposedly will be superior to Aura in many aspects. The consensus mechanism is also 

subject to the future possibility to integrate the KILT network into the Polkadot ecosystem. 

Polkadot Integration 

As a further great advantage, by basing ourselves on Substrate, from a technical perspective, 

we can easily connect to the Polkadot ecosystem. This could provide security for the KILT 

network by leveraging the global consensus in the Polkadot network. We are planning to 

integrate KILT into the Polkadot network. It is fairly straightforward to achieve that by simply 

including specific Substrate modules into the KILT Node implementation. The exact details of 

this integration is subject to future agreements between Polkadot and KILT and the 

technological development of Polkadot, Substrate and KILT. 

KILT Token 

Token transfer is implemented as a balance-based mechanism in Substrate. In our current 

testnet, every KILT identity can simply request Mash Coins at the KILT Faucet. Importantly, 

these test tokens will not be usable on our mainnet. After the launch of the mainnet (Spirit-

Net) and the public KILT Coin sale, tokens will be available on cryptocurrency exchanges. In 

describing the functionalities for the Mash Coins and the future KILT Coins together as we 

have designed them so far, we use the term KILT token.  

https://wiki.parity.io/Aura
https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
https://polkadot.network/
http://faucet.kilt.io/


KILT White Paper                        Version 2020-Jan-15 

94 

 

7.3. KILT SDK 

We provide a Software Development Kit (SDK) that implements all KILT protocol 

functionalities. The SDK contains a complete specification as well as a coherent software 

library aligned to the current version of the KILT Protocol. This SDK enables application 

developers to build powerful services and applications on top of the KILT Protocol without 

deeper knowledge of blockchain technology. It may also be used as a blueprint for developers 

to create their own SDK implementation for the KILT protocol for a different technology stack 

than that is currently used in our SDK. 

 

The KILT SDK is written in Typescript, so, on the one hand, it defines strong types for every 

protocol data scheme and provides classes and functions for all protocol conventions and 

flows, and, on the other hand, it is compatible with as many platforms (browser, mobile, 

backend, etc.) as possible, also regarding the coverage of modern software stacks. 

  

From a functional perspective, the SDK as of now is covering all data schemes, conventions 

and methods described in Chapter 2 to 4 (Top-down Trust Structures, KILT Economy, Claim 

Standardisation) but does not implement concepts and processes discussed in Chapter 5 

(Token Economy) & 6 (Bottom-up Trust). From a non-functional perspective, the SDK focuses 

on being accessible to a broad developer community (full documentation with examples) and 

being very stable (thus aiming for a full test coverage). Currently, there is no explicit focus on 

computation or memory efficiency, batch-processing or other performance related criteria. 

However, according to our preliminary assessment, the SDK will serve sufficiently for most 

common applications and may serve as a base or blueprint for other applications using or 

implementing the KILT protocol. 

  

We also provide a reference implementation for the KILT Protocol (KILT testnet, described in 

the next chapter) that serves as a preliminary environment for developers and stakeholders 

interested in the KILT ecosystem. To demonstrate a large set of KILT Protocol use cases there 

is also a web-based demo client that uses nearly all SDK functionality. Additionally, the client 

makes use of a server-based backend component that provides a CTYPE and contact registry 

as well as a messaging service (see next chapter for details).  



KILT White Paper                        Version 2020-Jan-15 

95 

 

8. KILT Network Launch Roadmap 
This chapter gives an overview of the proposed roadmap for the gradual launch of the KILT 

network. We describe how we imagine the step-by-step build out of the KILT ecosystem with 

a functioning blockchain, some handy adjacent services and a sample client application, which 

together can be used to play around or as a toolkit for developing new applications. This 

section also points out the restrictions of the various stages of the KILT network (testnet, 

persistent testnet, mainnet).  

8.1. Testnet Overview 

Currently, KILT is implemented in a testnet stage, which consist of different building blocks 

and all parts of the system is deployed in Amazon Web Services (AWS). 

 
 

KILT Blockchain 

KILT Network is built upon a lightweight special blockchain based on the Substrate framework. 

It contains all essential functions described in Chapters 2-4. Details of the current 

implementation is described in the previous chapter. 

Demo Client 

We implemented a simple client application that employs the modules of the KILT Protocol 

SDK. This client includes a cryptocurrency and credential wallet. Users can create KILT 

identities, claims, request and provide attestations, revoke and verify credentials. Also, they 

can build up and manage complex trust structures described in Chapter 2. 



KILT White Paper                        Version 2020-Jan-15 

96 

 

Centralised Demo Services 

To bootstrap the KILT ecosystem, we develop and provide some simple services to enable 

the seamless onboarding and use of the KILT protocol for early adopters. The repository of 

these services can be found at: https://github.com/KILTprotocol/prototype-services 

 

The current KILT Demo Services fulfil two purposes, to make the demo client work and to 

show how service ecosystem around the KILT Protocol would be built up. There are sample 

implementations for three service types as described below. All service types are implemented 

in Typescript using node.js as a service framework and MongoDB to store data. To simplify 

the demo ecosystem, all services are currently implemented as a centralised solution. 

 

CTYPE registry service 

To use the KILT protocol, all participants need to share CTYPE definitions as this is the meta 

model for all claims. A hash of the CTYPE is written to the KILT Blockchain but the data itself 

needs to be passed from the CTYPE creator to all other participants in some way. 

  

The CTYPE service takes a CTYPE definition, checks its state on the chain and writes it to 

the database. In the future, there could be decentralised, centralised or even offline ways to 

distribute the CTYPE. 

 

Messaging service 

The messaging service offers a way to send a message from a sender to a receiver in a secure 

way. Currently, the KILT Protocol works over this messaging service and users can 

communicate over this central service through which they can send each other KILT related 

messages. The demo client uses the Crypto and Messaging modules of the SDK to encrypt a 

message before sending it to the service, so only the receiver is able to decrypt it. The 

messaging services adds a message identifier and a “received-at” timestamp to the message. 
The receiver is able to fetch and delete the message from this service. 

 

Contact service 

Besides CTYPEs and messages the KILT protocol also requires users to get to know each 

other. To really simplify demoing use cases of the KILT protocol with the client identities may 

register themselves after being created to the contact service with an alias. Of course, in real 

applications there will be many ways to get in contact and exchange information like public 

keys. The centralised demo contact service is more like a public telephone book, where 

everybody is registered, and users can find Attesters and Verifiers and learn their public keys 

or DIDs. 

 

Building new services for KILT 

Functionally these services are not designed to be a blueprint for any other KILT service 

implementation as they for sure lack basic functional and non-functional requirements (like 

security) and add a very centralised component, whereas a decentralised solution would serve 

the purpose far better. The service implementations provided are meant for demonstration 

purposes only, and therefore not to be used in any production system without carefully 

adapting them to the applications requirements on security, scalability etc. 

https://github.com/KILTprotocol/prototype-services


KILT White Paper                        Version 2020-Jan-15 

97 

 

  

The service components use the KILT SDK on their server side and show how to check 

integrity, ownership and validity of data passed around. This may be used as an inspiration 

for other client-server applications where the system is designed to ensure integrity on both 

sides. 

 

Since our implemented demo services are only simple proposals for additional functionality 

for the KILT ecosystem, we encourage early adopters to create their own services around 

KILT. Botlabs plans to run a cloud service for credential storage, and we encourage third 

parties to support KILT for example in more complex Identity Hub software.  

8.2. Screenshots of the Implemented Testnet Ecosystem 

Our testnet ecosystem, shown in the following, currently features all functionality in a Demo 

Client, using our simple demo services augmented with some third-party blockchain 

visualisation tools. 

 

 
Central Contact Service 



KILT White Paper                        Version 2020-Jan-15 

98 

 

 
Creating a new KILT ID 

 

 

 
Creating a new CTYPE 



KILT White Paper                        Version 2020-Jan-15 

99 

 

 
Central CTYPE Service 

 

 

 

 

 
Creating a new Claim 

 

 



KILT White Paper                        Version 2020-Jan-15 

100 

 

 
Request for Attestation 

 



KILT White Paper                        Version 2020-Jan-15 

101 

 

 
Credential presentation while hiding some fields of the Claim 

 

 

  



KILT White Paper                        Version 2020-Jan-15 

102 

 

Telemetry Service 

 
 

Blockchain Explorer 

 

 

8.3. Release Roadmap 

Testnet: Mash-Net 

Launch of KILT will be in three steps which we plan as follows. First, Botlabs launched a 

testnet called Mash-Net in May 2019 which can be used for creating proof of concepts (PoC) 

by anyone (companies or early implementers and contributors) who is interested in building 

services and applications on the KILT network. These could be any software projects based 

on the KILT SDK which are more or less stable throughout the evolution of KILT. Note that, it 

is always possible to run the KILT testnet locally which gives implementers stability and 

security in their PoCs and dev environments. 

Restrictions of the testnet: 

http://telemetry.kilt.io/#/KILT%20Testnet
https://github.com/paritytech/substrate-telemetry
https://github.com/paritytech/substrate-telemetry
https://chain-explorer.kilt.io/#/explorer
https://github.com/polkadot-js/apps
https://github.com/polkadot-js/apps


KILT White Paper                        Version 2020-Jan-15 

103 

 

○ Play money (a KILT token with similar functionalities as the KILT Coin shall 

have) 

○ Transactions written to the testnet chain could be reset anytime.  

○ No migration of transactions to persistent testnet 

○ No TCAs 

○ No Token economy / block rewards 

○ No connection to Polkadot 

○ Authority nodes are run Botlabs or by invitation 

○ Implementers and contributors can run their own node but cannot propose 

new blocks 

 
Current Release Roadmap for the KILT Network 

Persistent Testnet: Wash-Net 

The persistent testnet will be called Wash-Net, and it shall be an environment where the 

transactions shall be safe and preserved for the mainnet. This means you could start 

productive use of your software with the restrictions that you do not have a running token 

economy (maybe in an experimental phase) and it will still use play money. So, the persistent 

testnet is supposed to be transaction safe but not balance safe at that point of time. Launch 

of the persistent testnet will probably be around 2020 Q2.  

Mainnet: Spirit-Net 

This shall contain all features described and proposed here in the white paper for the KILT 

network, with potential changes coming up during the process and additional details of the 

whole concept we have not figured out yet.  

 



KILT White Paper                        Version 2020-Jan-15 

104 

 

GDPR Considerations 

EU Privacy Rules 

The General Data Protection Regulation36 (GDPR) aims to protect the personal data of those 

living within the borders of the European Union by regulating how such data can be processed 

by an individual, a company, or an organisation37. It is important to understand that the 

regulation not only applies to companies, individuals, or organisations that are located in the 

EU but to everyone that offers their products and services to residents of the EU. Although it 

does not consider the concepts of the blockchain, GDPR and the blockchain share one 

common goal: the protection of data38. In the following paragraph, the most important GDPR 

rules are introduced. Assessments are based on the Blockchain Bundesverband Position 

Paper “Blockchain, data protection, and the GDPR”39. 

Definition of Personal Data 

The rules defined in the GDPR apply to personal data only. Personal data means any 

information that relates to an identified or identifiable natural person, also called ‘data subject’. 
An identifiable natural person is one that can be identified directly or indirectly by an identifier, 

i.e. a name, an identification number, an online identifier, etc. In order to determine if a natural 

person is identifiable, reasonable means likely to be used for the identification have to be taken 

into account. 

The linkability of information to an individual which enables his identification is crucial to the 

concept of personal data. Truly anonymous data does not represent personal data. However, 

pseudonymised data which could be attributed to a natural person by the use of additional 

information should be considered personal data. This could entail: 

● Public keys, as soon as they can be associated with a natural person, could 

considered personal data. If the key does not belong to a natural person, or is not 

created on behalf of a natural person, or the key cannot be linked to a data subject by 

reasonable means, then it would not be considered personal data. 

● Hashed data has been determined as pseudonymous data. However, if the data 

linking the hashed data to a data subject is kept off-chain and is later erased, the 

hashed data should once again be considered anonymous.  

 
36 Regulation (Eu) 2016/679 Of The European Parliament And Of The Council (General Data 
Protection Regulation), as seen 06th February, 2019, 
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02016R0679-20160504&from=EN,  
37 What does the General Data Protection Regulation (GDPR) govern?, 
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-does-general-data-protection-
regulation-gdpr-govern_en, as seen 1st February, 2019 
38 How Can Blockchain Thrive In The Face Of European GDPR Blockade?, 
https://www.forbes.com/sites/darrynpollock/2018/10/03/how-can-blockchain-thrive-in-the-face-of-
european-gdpr-blockade/, as seen 1st February 2019 
39 The summary is based on the Blockchain Bundesverband Position Paper “Blockchain, data 
protection, and the GDPR”, as seen 1st February 2019, https://www.bundesblock.de/wp-
content/uploads/2019/01/GDPR_Position_Paper_v1.0.pdf,  

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02016R0679-20160504&from=EN
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-does-general-data-protection-regulation-gdpr-govern_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-does-general-data-protection-regulation-gdpr-govern_en
https://www.forbes.com/sites/darrynpollock/2018/10/03/how-can-blockchain-thrive-in-the-face-of-european-gdpr-blockade/
https://www.forbes.com/sites/darrynpollock/2018/10/03/how-can-blockchain-thrive-in-the-face-of-european-gdpr-blockade/
https://www.bundesblock.de/wp-content/uploads/2019/01/GDPR_Position_Paper_v1.0.pdf
https://www.bundesblock.de/wp-content/uploads/2019/01/GDPR_Position_Paper_v1.0.pdf


KILT White Paper                        Version 2020-Jan-15 

105 

 

● Encrypted data is considered to be pseudonymous data, as there might be a 

possibility in the future that encrypted personal data could be linked back to a natural 

person (e.g. the encryption of the data gets cracked). 

General Data Subject Rights 

There are three rights laid down in GDPR which we consider here: 

● Right to Erasure (Art. 17): 

This basically means that the data subject has the right to have the data controller 

erase his or her personal data without undue delay. In general, data written on the 

blockchain is permanent which conflicts with this general principle. 

● Right to Restriction of Processing (Art.18): 

In general, when the data subject is considering the accuracy or the legitimate grounds 

for processing his or her personal data in question, then the data controller should 

automatically restrict the processing of the data (remove from public website, move to 

a secondary database, etc.). 

● Right to Data Portability (Art. 20): 

The data subject has the right to receive the personal data concerning him or her which 

he or she has provided to a controller in a structured, commonly used, and machine-

readable format.  

These assessments based on the Blockchain Bundesverband Position Paper “Blockchain, 
data protection, and the GDPR”40 is not yet a conclusive legal assessment and discussions 

between the blockchain sphere and the data protection experts are ongoing with the hope that 

guidelines in line with the GDPR data protection system will be found for Blockchain solutions. 

For example there is an ongoing discussion that hashes of personal data could be seen as 

anonymous data if they were not only to include the personal data but also other randomized 

data so that even if you knew the personal data you could not know that a certain hash also 

contains the same personal data. In this case, a hash could also be stored in the blockchain 

without the GDPR being applicable for it. 

All these discussions are just about to begin and there are no binding assessments or decided 

cases about all these issues available at this point of ime. 

How the KILT Protocol protects data 

KILT is built on the principles of “Privacy by Design”. In particular, KILT does not store any 
personal data on-chain. In order to achieve this 

 

● The Claimer (who will in many cases be the end user) is in full control of her data 

● This implies the Right to Erasure 

 
40 The summary is based on the Blockchain Bundesverband Position Paper “Blockchain, data 
protection, and the GDPR”, as seen 1st February 2019, https://www.bundesblock.de/wp-
content/uploads/2019/01/GDPR_Position_Paper_v1.0.pdf,  

https://www.bundesblock.de/wp-content/uploads/2019/01/GDPR_Position_Paper_v1.0.pdf
https://www.bundesblock.de/wp-content/uploads/2019/01/GDPR_Position_Paper_v1.0.pdf


KILT White Paper                        Version 2020-Jan-15 

106 

 

● When the Claimer shares Claim or Credential Data with Attesters or Verifiers, these 

entities have the responsibility to comply with GDPR rules. The protocol cannot enforce 

this or control the right behaviour. 

● The Blockchain only stores hashed data which points to datasets (Credentials) that are 

under the control of the Claimer. The Claimer is free to erase the datasets so that the 

hashed data becomes meaningless. 

 
In general, data written to a public blockchain is available to the general public and should be 

deemed to comply with data portability requirements, but it cannot comply with the right to 

erasure or right to restrict processing.  

The Claimer shall have full control over her credentials containing her personal data as they 

shall be stored in her data and identity hub under her control and shall not be made available 

on the blockchain. The identity hub is still to be developed and would be a complex client 

wallet software system concept which would be controlled by the Claimer that manages her 

decentralised identifiers (DIDs), handles key creation and recovery methods, and stores 

credentials. This system shall be comprised of local as well as cloud storage elements which 

would be synchronised and manage the encrypted and redundant storage of the Claimer’s 
personal data. Identity hubs would be provided by commercial companies and are not part of 

the KILT Protocol. 

KILT does not write Claims containing personal data on the blockchain neither in plain text nor 

in encrypted form but only in hashed form (combined with random numbers for data protection 

reasons) inside the on-chain attestations. The Claimer can always decide to delete the claim 

from her identity hub as well as abandon and never use her private/public key pair again. We 

describe a simple reference implementation of a client wallet for the KILT Protocol in Chapter 

7. 

When the Claimer shares her personal data with a third party (Attester or Verifier), the third 

party might store this data. This however concerns the data management policy of the third 

party and not KILT Protocol. In this case the third party has to make sure to comply with GDPR 

wherever applicable. This means that the Claimer is by EU law entitled to forcibly ask everyone 

who has this data to erase it. 
As discussed earlier, it might be possible to relate from a payment made in KILT tokens to the 

event of an Attestation. Even though the content neither of the Claim nor of the Credential will 

be disclosed, the event might already be considered personal data. It is considered to 

introduce Zero Knowledge Payment transactions into KILT in order to prevent this issue. 

KILT and the GDPR 

Even if the KILT Protocol is designed in a way that should ensure data protection on a very 

high level, as mentioned above the GDPR and blockchain do not match well and therefore the 

KILT Protocol does have the same problems with the GDPR as any other blockchain project. 

The main source of mismatch is that the GDPR was created with a vision of a central data 

processor who actively collects data, stores data and has the sole power over the data 

collected. This system also works for any type of shared data processing where one or more 

entities hold the power over their stock of data. 



KILT White Paper                        Version 2020-Jan-15 

107 

 

Even if there exist translations of this system into the blockchain world, the approach is 

substantially different from the actual technology based on permissionless and decentralised 

data processing where none of the involved entities hold the power over the data they process 

- and this is in essence what makes these decentralised ledger systems safe against attacks 

who aim to change data for their own benefit. 

As Distributed Ledger Technology and the GDPR are both relatively new, there are still many 

uncertainties about how to match them and neither data protection advisers nor the authorities 

have found a match that could be used as a standard to ensure to be compliant with GDPR. 

Therefore our approach is to be as compliant with GDPR’s ideas as possible and to protect 
the personal data of potential users as best as we can, while keeping ourselves up to date 

with developments and discussions in that field. 

  



KILT White Paper                        Version 2020-Jan-15 

108 

 

Legal Note 
The purpose of this white paper is to present the KILT Protocol, the plans for further 

developments and the technical infrastructure around it to an interested public from today’s 
perspective. The information set forth should not be considered exhaustive and does not imply 

any elements of a contractual relationship. Its sole purpose is to provide potentially relevant 

and reasonable information to any developers who think about integrating the KILT Protocol, 

to any blockchain developers who wish to contribute to the KILT Community and to potential 

implementation partners who want to get an insight into the current state of the KILT project. 

 

Nothing in this white paper shall be deemed to constitute a prospectus of any sort or a 

solicitation for investment, nor does it, in any way, pertain to an offering or a solicitation of an 

offer to buy any securities in any jurisdiction. The document is not composed in accordance 

with, and is not subject to, laws or regulations of any jurisdiction which are designed to protect 

investors. 

 

This white paper is a living document subject to constant change. Certain statements, 

estimates, and financial information contained within this white paper constitute forward-

looking, or pro-forma statements, and information. Such statements or information involve 

known and unknown risks and uncertainties which may cause actual events or results to differ 

materially from the estimates or the results implied or expressed in such forward-looking 

statements, even if such statements are not specially marked as unknown or uncertain by an 

explicit remark or by the grammar or tense used. 

 

Nothing published by the BOTLabs GmbH should be interpreted as investment advice. 

BOTLabs GmbH is in no way providing trading or investment advice. Please consult with your 

appropriate licensed professional before making any financial transactions, including any 

investments related to ideas or opinions expressed, past, present, or future by the 

aforementioned entity and any future entities that may operate under the parent entities. 

BOTLabs GmbH does not intend to express financial, legal, tax, or any other advice and any 

conclusions drawn from statements made by, or on, BOTLabs GmbH shall not be deemed to 

constitute advice in any jurisdiction. Information is provided for educational and entertainment 

purposes only.  

Imprint 

BOTLabs GmbH    Managing Director: Ingo Rübe 

Keithstr. 2-4    AG Charlottenburg HRB 193450 B 

10787 Berlin    VAT-Id No. (USt-IdNr.): DE316284270  

Germany 

info@kilt.io info@botlabs.org    

https://kilt.io/ https://botlabs.org  Requirements according to § 5 TMG (Germany) 

 

 

 

  

mailto:info@kilt.io
mailto:info@botlabs.org
mailto:info@botlabs.org
https://kilt.io/
https://botlabs.org/


KILT White Paper                        Version 2020-Jan-15 

109 

 

Final Comments 
 

 

 

 

In this document we outlined our current approach to provide credentials for the Web3 by 

providing a blockchain based fat protocol named KILT. We welcome any comments and 

feedback about the KILT project at info@kilt.io or any other relevant channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:info@kilt.io

	Executive Summary
	1. Why the Internet Needs a Trust Network
	1.1. Trust on the Internet
	Evolution of Trust through Cooperation
	Forming Trust Relationships
	Problems of Creating Online Trust
	Accountability
	Bootstrapping

	Current Solution Proposals and their Limitations
	Public Key Infrastructure (PKI)
	PGP Web of Trust
	Reputation Platforms


	1.2. Arguments for a Network Solution
	End-to-end Principle
	Standardisation for Interoperability
	Internet Governance
	Some Challenges of the Platform Web

	1.3. Where we see the Opportunity Through Blockchain?
	Why We Think Blockchain is the Solution
	What is the Role of Blockchain-Technology
	Network Solution through Blockchain
	Service/Application providers cannot silo user data.
	No single party may control vital parts of the network’s functionality.
	Innovation and value creation move to the protocol layer of the network.


	1.4. Conclusion
	Value can be captured on the protocol layer.
	Protocols can acquire economic superpowers.
	Data belong to their producers and not to service providers.
	Existing data silos should be made interoperable.
	Standardisation could be a key to success.
	Providing trust can turn into a relevant business model for many companies.
	Mapping of existing organisational structures is essential.

	1.5. Solution Statement

	2.  Top-Down Trust Structures in KILT
	2.1. Current Problems with Trust Structures on the Internet
	2.2. Current State in the Real World
	2.3. Solution Statement: KILT Protocol
	Self-Sovereign Data and Identity
	Roles
	Claimer
	Attester
	Verifier

	Comparison to Current Standard Proposals and Definitions
	Claim Types (CTYPEs)
	Why KILT Needs a Blockchain
	Revocable Attestations
	CTYPE
	Payment Transactions

	Quotes
	Building Top-Down Trust Structures in KILT
	Legitimation
	Hierarchy of Trust
	Private Curated Registries (PCR)



	3.  KILT Trust Market Economy
	3.1. Trust Market
	3.2. Participant Views and Economic Benefits
	Value Flow in KILT
	Claimer
	Attester
	Verifier
	Example: Concept for the Food-net

	3.3. Economic Benefits in Trust Structures
	Aggregator
	Hierarchy of Trust
	Private Curated Registries (PCRs)
	Creating Revenue
	Attestation from a PCR
	PCR Example 1: Know Your Customer (KYC) Process
	PCR Example 2: Market for Used Cars



	4.  Claim Standardisation
	4.1. We Need Standardised Claims for Investment Security
	Diversity of Standardisation Processes
	de jure standardisation
	de facto standardisation
	Competing Forces in the Standardisation Process

	Investment Security
	CTYPEs in the KILT Economy


	4.2. What is a Claim Type (CTYPE)?
	Basic Concept behind CTYPEs
	CTYPE Metadata
	Creating and Storing CTYPEs
	Nested CTYPEs
	Services

	Benefits of Using CTYPEs
	Application Development
	Usability
	Trust


	4.3. Incentivising Standardisation

	5. Bottom-Up Trust: Token-Curated Attester (TCA)
	5.1. Comparing TCRs with Real World Organisations
	5.2. Introduction to the Token-Curated Attester
	TCA Issues Credentials to Claimers
	Experts Do the Inspection Work before Issuing TCA Credentials
	Curators Select the Best Experts for their TCA

	5.3. Economic Incentives for Curators and Experts in a TCA
	5.4. TCA Subtoken Model
	Bonding Curve
	Subtoken Price Determination
	Starting a TCA
	Becoming a Curator by Buying into the TCA
	Governance Mechanisms

	5.5. Regulation-Friendly TCA Ecosystem built on the KILT Protocol

	6. KILT Token Economy
	6.1. KILT Token
	Overview of the KILT Token Functions
	KILT Token Emission
	Reward Pool
	Controlling Inflation in Proof of Stake Systems


	6.2. Designing Demand and Incentives for the KILT Token
	Block Rewards for Security and Consensus
	Token Lock-up due to Staking in Proof-of-Stake
	Utility of KILT tokens

	6.3. Open Topics

	7. System Architecture
	7.1. KILT Overview
	7.2. KILT Protocol
	Identity Management
	KILT Decentralised Identifier (DID)
	Two ways of using DIDs with KILT
	Node Implementation of DID Registration


	Creating, Registering and Publishing a CTYPE
	Building a CTYPE
	Register a CTYPE
	Node Implementation of CTYPE Registration

	Creating a Nested CTYPE
	Reference Pointer ($ref)
	Validating
	oneOf Combination

	Publishing a CTYPE on the Registry Service

	Claim Structure
	General Claim Structure
	Example Claim of the DriversLicense CTYPE

	Request for Attestation
	The Hash-Tree
	The Claim Hash

	Quote
	Terms

	Attestation and Revocation
	Creating a Credential from a Claim through Attestation
	Scheme of the Attestation
	Scheme of the Credential
	Writing an Attestation to the Blockchain
	Revocation
	Attestation as a service
	Node Implementation of Attestation and Revocation
	Add
	Revoke
	Lookup


	Verifying a Credential
	Credential Presentation

	Complex Trust Structures
	Attesting a Claim with Legitimations
	Hierarchy of Trust
	Delegation Node Permissions
	Inviting to Delegate
	Attest as Delegate
	Revoking Delegations

	Node Implementation of the Hierarchy of Trust
	Create root
	rootId => (CTYPEHash, owner, revoked)
	Add delegation
	Revoke
	Lookup


	Communication and Messaging
	Timestamp Proofs
	Message Types
	REQUEST_ATTESTATION_FOR_CLAIM
	SUBMIT_ATTESTATION_FOR_CLAIM
	REQUEST_CLAIM_FOR_CTYPE
	SUBMIT_CLAIM_FOR_CTYPE
	REQUEST_TERMS
	SUBMIT_TERMS
	REQUEST_ACCEPT_DELEGATION
	SUBMIT_ACCEPT_DELEGATION
	INFORM_ACCEPT_DELEGATION


	KILT Blockchain
	Building on the Parity Substrate Blockchain Framework
	Remote Procedure Calls
	Blocktime
	Extrinsics and Block Storage
	Consensus Algorithm
	Polkadot Integration
	KILT Token


	7.3. KILT SDK

	8. KILT Network Launch Roadmap
	8.1. Testnet Overview
	KILT Blockchain
	Demo Client
	Centralised Demo Services

	8.2. Screenshots of the Implemented Testnet Ecosystem
	Telemetry Service
	Blockchain Explorer

	8.3. Release Roadmap
	Testnet: Mash-Net
	Persistent Testnet: Wash-Net
	Mainnet: Spirit-Net


	GDPR Considerations
	EU Privacy Rules
	Definition of Personal Data
	General Data Subject Rights

	How the KILT Protocol protects data
	KILT and the GDPR


	Legal Note
	Imprint

	Final Comments

